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Abstract 
 

With aging, keratinocytes have diminished proliferative capacity resulting in atrophic skin 

with reduced barrier function. This investigation evaluates the effect of daily topical 

applications of a novel high-molecular weight hyaluronan cream (HA-PE) on keratinocyte 

renewal and epidermal thickness. Unmodified hyaluronan and HA-PE were mixed 

separately into a vehicle cream. Each topical formulation was applied daily onto the shaved 

backs of aged female C57BL6 mice. Full-thickness biopsies of treated skin were obtained 

for analysis of keratinocyte proliferation, keratinocyte differentiation, and local 

inflammation at days 1, 5, and 10 of cream application. In addition, a cardiac puncture was 

performed for serum C-reactive protein analysis. The HA-PE group exhibited the highest 

level of keratinocyte proliferation and epidermal thickness at all time points. There was no 

significant difference in keratinocyte differentiation or local/systemic inflammation 

between groups. Thus, topical HA-PE cream is a novel skin care technology that increases 

epidermal thickness through enhanced keratinocyte proliferation/renewal. 

 

 

Keywords topical hyaluronan, topical hyaluronic-acid, keratinocyte proliferation, 

epidermal thickness, skin renewal, skin aging; hyaluronan-phospholipid 
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Chapter 1: Introduction 

Epidermis 

Structure and Function 

The skin is a specialized organ derived from both ectoderm and mesoderm precursors 

during embryogenesis. Skin has many important roles including providing a barrier to the 

external environment, sensation, immune surveillance, thermoregulation, endocrine 

functions and control of insensible fluid loss [1] . The integumentary system structure and 

physiology evolves with senescence. In contrast to young skin, aged skin is characterized 

as atrophic, dry, wrinkled, and fragile. However, it is not only the external appearance of 

skin that deteriorates with age- so does its function [2-4].  

 

Anatomically, the epidermis (ectoderm) and dermis (mesoderm) are the primary layers of 

the skin. The epidermis is avascular and receives oxygen and nutrients by passive 

diffusion from the underlying dermis. In humans the epidermis forms a sinusoidal pattern 

with projecting fingerlike extensions, termed rete ridges, into the underlying dermis. The 

rete ridges provide an increased surface area of contact with, and thus adherence to, the 

underlying dermis. With aging, rete ridges become effaced and the epidermis is more 

vulnerable to external mechanical forces such as friction and shearing [3]. Simple skin 

tears, from innocent trauma such as removing an adhesive bandage for example, can 

result in significant morbidity for the elderly [5]. 

 

The epidermis is classified histologically as a stratified squamous epithelium. In humans, 

there are four identified layers of the epidermis.  These layers are from deep (resting on 

the skin basement membrane (BM)) to superficial (exposed to the external environment): 



www.manaraa.com

 
 

 

2 

stratum basale, stratum spinosum, stratum granulosum, and the stratum corneum (SC). 

The epidermis also lines dermal appendages including various sebaceous/eccrine sweat 

glands and hair follicles. This feature provides a reservoir for epidermal regeneration 

following wounding or extensive epidermal trauma such as a partial-thickness burn.  

 

Young epidermis possesses a robust renewal capacity. The keratinocyte is the principal 

cell in the epidermis. Keratinocytes are generated from stem-cell progenitors lining the 

basal layer of the epidermis and the bulge of the hair follicle [6]. With respect to the 

epidermis, ongoing replication pushes terminally differentiated keratinocytes towards the 

SC. The SC is characterized by anucleate corneocytes embedded in a laminar lipid matrix 

[7]. The thickness of the epidermis and concentration of natural moisturizing factors 

(NMF) improve the barrier role of skin [7, 8]. Flaggrin and hyaluronan (HA) are two 

examples of NMF important to SC hydration [7]. Desquamation, a process of shedding 

the outermost layer of the SC, allows the cornified envelope to balance the replicative 

potential of the stratum basale. The typical transit time of a keratinocyte through the 

epidermal layers is four weeks [1]. The self-renewal capacity of the epidermis is therefore 

tightly regulated to preserve homeostatic balance. However with aging, a new set-point is 

established as the thickness of the epidermis is diminished and this reflects a reduced 

proliferative capacity [4].  

 

Between the cellular components of skin lies the extracellular matrix (ECM). The 

epidermal ECM is composed of proteoglycans and glycosaminoglycans. 

Glycosaminoglycans (GAG) are formed from disaccharide units of an amino and uronic 



www.manaraa.com

 
 

 

3 

sugar. The simplest and most abundant GAG in the skin is HA. HA is found in the 

intercellular ECM and forms pericellular coats (discussed later in this chapter) around 

keratinocytes. Proteoglycans differ in that they contain a protein core with variable 

attachment of glycosaminoglycans. The BM, a specialized part of the ECM, separates the 

stratum basale from the dermis and is composed primarily of laminin, type IV collagen, 

and proteoglycans [9]. The differential structure of the BM helps identify the polarity of 

the epidermis. Overall, proteoglycans and GAG provides a structural framework to 

support cellular components of skin.  As with keratinocytes aging, aging also affects the 

constituents of the ECM. Further details of GAG and aging are discussed later in this 

chapter. 

 

Along with the keratinocyte, the epidermis contains other resident cell types including 

Langerhans cells, melanocytes, and Merkel cells. These cells are responsible for immune 

surveillance through antigen-presentation, protection from ultraviolet light exposure, and 

mechanosensation respectively.  

 

Keratinocyte Proliferation and Differentiation 

Keratinocyte proliferation and differentiation provide a foundation for epidermal repair 

and renewal. Keratinocyte renewal and maturation is identified by differential expression 

of cell surface markers as the keratinocyte proliferates, migrates to and ultimately 

integrates into the stratum corneum. Cutaneous keratins form intermediate filaments that 

provide structural support to keratinocytes. Different keratins are expressed during 

keratinocyte proliferation/differentiation. For example, keratin cell surface expression of 
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K5/K14 are hallmarks of epidermal proliferation and K1/K10 expression indicates 

suprabasal terminal differentiation [10, 11]. Additional proteins such as Ki67 are also 

commonly used to identify cellular proliferation [12-14]. A complex interaction of 

mechanical and cytokine ECM signaling regulates the keratinocyte 

proliferation/differentiation program [10, 15].  

 

The basal layer of the epidermis contains epidermal proliferative units (EPU) [1, 16-18]. 

An EPU is formed from a single adult stem cell and its progeny. Epidermal adult stem 

cells can be found in niches in the basal layer of the epidermis and the bulge of the hair 

follicle. Through symmetric and asymmetric cell division the epidermal stem cell 

progenitor can replace itself and produce a transit-amplifying (TA) intermediate stem 

cell. The TA intermediate has a finite number of self-renewal cell divisions before being 

committed to a terminal differentiation pathway (represents keratinocytes with no further 

proliferative capacity). The adult stem cell forming the EPU can be identified using 

certain markers such as Oct4, which is expressed by the immortal stem cell but down 

regulated in the differentiated progeny (for example, TA intermediate stem cells)[19].  

The self-renewal capacity of the epidermis is dependent on the organization and 

functional activity of the EPU.  Various growth factors (epidermal growth factor (EGF) 

[20], keratinocyte growth factor (KGF) [12, 20], transforming growth factor beta 

(TGFβ)[21]), GAGs (HA), and mechanical stimuli [15] have been implicated in 

regulating keratinocyte growth. 
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Hyaluronan  
HA is an ubiquitous ECM non-sulphated GAG present in mammalian tissues. Although 

first discovered in the vitreous humor of the eye in the 1930’s [22], the majority of total 

body HA is present in the skin [23, 24]. HA consists of linear chains of repeating 

disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid [25, 26]. Despite a 

simple chemical structure, endogenous HA can exist in a variety of conformations from 

simple extended chains to complex random entanglements [27, 28]. HA is also highly 

hydrophilic and can bind 10,000X its own weight in water [29, 30]. Both extracellular 

and intracellular HA exist, however the focus of this thesis will be limited to discussion 

of extracellular HA. Limited knowledge exists regarding the function of intracellular HA 

in epidermal rejuvenation and integrity. In comparison, extracellular HA is known to be 

important in preserving epidermal hydration as well as providing a scaffold for 

keratinocyte communication, proliferation, and differentiation.  

 

Extracellular HA exists in a number of functional forms including cell associated 

pericellular coats, as extracellular structures bound to proteins, or as a small circulating 

pool of unoccupied HA [23, 31]. HA can modulate cellular activity through interaction 

with a variety of cell-surface receptors. CD44 is the major constitutively expressed HA 

receptor of the epidermis [23]. RHAMM is an additional HA receptor which is expressed 

during tissue inflammation and tissue repair [32]. HA receptor affinity, arrangement and 

downstream signaling cascades are influenced by the size of bound HA. CD44 binds HA 

through a single extracellular link domain [33]. High molecular weight HA (HMWHA) 

has multivalent sites for synchronous interactions with multiple CD44 receptors. 

HMWHA has thus been shown to induce clustering of CD44 receptors [34]. Yang et al. 
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(2012) through in vitro models showed that treatment with low molecular weight HA 

(LMWHA) disrupted the amount of CD44 clustering present on cells [35]. Thus, CD44 

clusters create a configuration partial to HMWHA (anti-inflammatory) signaling, which 

appears inherently different to the single ligand-receptor interactions (pro-inflammatory) 

effects of LMWHA [35].    

 

Hyaluronan Homeostasis 

HA is synthesized in the inner surface of the plasma membrane by HA synthases (HAS) 

[24, 31]. Three different isoforms of HAS, all of which are found in skin, have been 

identified (HAS1, HAS2 and HAS3) [36]. HAS2/3 are predominantly expressed by 

keratinocytes, whereas HAS1/2 are expressed by fibroblasts [37].  Each synthase isoform 

shares approximately 70% identical amino-acid sequences, but functionally each HAS 

produces HA of differing lengths [33]. HAS1/2 are known to produce HMWHA. 

Whereas, HAS3 produces shorter LMWHA [27, 33]. Each HAS is differentially 

expressed indicating distinct modes of regulation of expression [36, 38]. HAS2, for 

example, is crucial for both embryogenesis and life [27]. In terms of skin, cutaneous 

injury studies demonstrate increased HAS2/3 mRNA expression by mouse keratinocytes 

[39]. In vivo HAS1/3 null mice show impaired HA accumulation following cutaneous 

wounding providing further evidence for the importance of HAS3 in the acute 

inflammatory response of keratinocytes [37]. All HAS enzymes extrude nascent HA into 

the extracellular environment through an intra-protein pore present in their molecular 

configuration [28].   
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Dynamic HA metabolism balances ongoing HA synthesis. In vivo studies in rabbits 

demonstrated that the half-life of free HA is short, quoted at approximately 3-5 minutes 

in blood [23, 40], 24-72 hours in skin [29, 31, 41] and 1-3 weeks in cartilage [29]. In 

contrast, the stable configuration of HMWHA appears to resist rapid hyaluronidase 

degradation [23]. The majority of HA degradation occurs in the lymphatics, but can also 

take place in the host tissue and spleen/liver sinusoids [23, 31, 40, 41]. HA is fragmented 

into smaller units by either hyaluronidases (HYAL) [24, 25]. Six primary HYAL have 

been identified which act by hydrolyzing the β (1-4) linkages between N-acetyl-D-

glucosamine and D-glucuronic acid [29]. [33]. HYAL2 specifically hydrolyses HMWHA 

into smaller oligosaccharides which are further degraded in lysosomes by HYAL1 [33]. 

Fragmented HA units are subsequently cleared through lysosome endocytosis and 

glycosidase degradation into terminal sugars. Alternatively, HA can be metabolized by 

free-radical metabolism [24]. The process of HA degradation is partially mediated by 

HA-receptor interactions that differ depending on the tissue site. For example, HA 

binding to CD44 may signal HA endocytosis in the skin whereas LYVE-1 receptor 

activation provides the equivalent stimulus in lymph nodes [27].  

 

Pericellular coats 

Using erythrocyte exclusion assays, Clarris et al. (1968) identified a cleared zone 

surrounding human synovial cells which they described as analogous to a bacterial 

capsules [42]. Treatment with hyaluronidase obliterated this potential space, validating 

the association of HA to the integrity of pericellular coats [28, 42, 43]. HA associates 

with the pericellular membrane through into the plasma membrane by interactions with 
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HA receptors such as CD44, and nascent chain attachments to HAS2/3 [27]. Tammi and 

Tammi (2008) have made important contributions to our understanding of HA 

pericellular coats. Using cells transfected with a green fluorescent probe GFP-HAS3, 

their group demonstrated that the presence of HAS in the cell membrane promoted the 

formation of plasma membrane protrusions [43] (Figure 1). The plasma membrane 

protrusions add both surface area and complexity to the three dimensional structure of the 

HA pericellular coat (Figure 2). 
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Figure 1. Hyaluronan dependent pericellular coats. Confocal images of hyaluronan-

coated microvilli on live cells transfected with green fluorescent protein (GFP)- 

hyaluronan synthase (HAS)3. Erythrocyte exclusion space and GFP-HAS3 in cell 

protrusions around a live cell are shown (A), the use of a hyaluronan binding probe 

demonstrates HA associated with the same cell (B), a composite image (C). (D-I) Time-

lapsed images of the same cell treated with Streptomyces hyaluronidase (10 TRU/ml) 

before treatment (D) and 1 (E), 2 (F), 3 (G), 4 (H) and 5 (I) min post-treatment. Arrows 

indicate microvilli projections resistant to degradation (I). Red, hyaluronan; green 

particles, erythrocyte autofluorescence; green in cell, GFP-HAS3 [43]. Image copyright 

was approved by SAGE publications (Appendix A).  
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Figure 2. Schematic diagram of proposed structure of pericellular hyaluronan coats. 

(A) Model whereby hyaluronan chains (red) attach directly into the plasma membrane 

(green) through hyaluronan receptors, hyaluronan synthases, or direct insertion creating 

an exclusion space for erythrocytes (orange). (B) Tammi and Tammi model whereby the 

presence of hyaluronan promotes plasma membrane protrusions creating a more complex 

scaffolding of the pericellular coat [43]. Image copyright is approved by SAGE 

publications (Appendix A).  
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Further study of the HA-dependent pericellular coat revealed its structure and function 

[28] [Figure 2]. The pericellular coats traps proteins, growth factors and other signaling 

factors in close proximity to the target cell that can stimulate downstream signaling 

cascades through target growth factor receptors and dynamic HA-receptor interactions. In 

addition to the interactions between CD44-HA, the HA pericellular coat can alter cell 

behavior through mechanotransduction signaling.  For example, endothelial HA 

pericellular coats are known to be important in inducing intracellular nitric oxide 

production secondary to shear stress produced from blood flow [28]. The cell coat is fluid 

and can be rapidly formed or destroyed depending on the state of the tissue [28]. Thick 

HA pericellular coats can form from a linear orientation of HA caused by the negative 

valences from proteoglycan associations, such as aggregan in chondrocytes and versican 

in fibroblasts [28]. The presence of proteoglycans can contribute to thick pericellular 

coats. However, epithelial cells also form 20 µm thick coats with minimal aggregation of 

proteoglycans [43].  

 

Plasma membrane CD44 is vital to pericellular coat formation. Blocking CD44 

expression through antibodies, CD44-siRNA, and knockout (KO) CD44-/- models has 

been shown to result in abnormal histolocalization of HA [44]. Interestingly CD44 KO 

mice show normal epidermal development and thickness, perhaps identifying 

compensation from other HA signaling pathways contributing to epidermal development 

[44]. 
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Molecular weight and function 

The multitude of identified functions of HA depend on its molecular size, concentration 

and configuration [23, 25]. The role of different molecular weight HA in skin hydration, 

aging, and acute and chronic wound repair been studied extensively [23, 30, 45-48].  

 

HMWHA: 

The rheological properties of HMWHA are known to improve the overall quality and 

immune barrier function of skin.  In terms of HA and wound healing, interestingly fetuses 

prior to 24 weeks gestation have markedly high expression of HA and are found to heal 

cutaneous wounds without scarring [30, 46, 47]. The majority of endogenous native HA 

is HMWHA (105 – 107 Daltons) which forms random coils and entanglements depending 

on the size and molecular associations [23, 27]. Endogenous HMWHA is particularly 

present in pericellular coats [25, 28, 43] that create a fluid scaffold for enhanced cell 

motility and as noted above HA modulates cell-to-cell adhesion, migration, proliferation, 

and differentiation [23, 45, 49] through interactions with CD44 receptors [32]. Overall, 

HMWHA functions are anti-angiogenic, anti-inflammatory and immunosuppressive [35]. 

HMWHA is known to prevent immune cell recognition and inhibit phagocytosis by 

macrophages [50]. Studies using the naked mole rat model suggest that HMWHA also 

infers cancer resistance [51]. HMWHA can act as a free radical scavenger, the toxicity of 

free radicals is diminished because reactive oxygen species (ROS) complex with the 

double bond in the D-glucuronic acid unit of HA [52].  

 

LMWHA: 
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Under certain tissue states, smaller HA fragments (low molecular weight HA, LMWHA) 

are produced de novo by hyaluronidase degradation or oxidative metabolism of 

HMWHA. LMWHA activates the inflammatory cascade and promotes angiogenesis in 

response to tissue injury [23, 35]. The diverse spectrum of processes that involve HA, 

highlight its importance to preserving overall skin health. 

 

Aging skin and hyaluronan 
Skin aging is a combination of the culmination of intrinsic and extrinsic influences [53, 

54]. Intrinsic aging, or chronological aging, refers to aging related to cellular DNA 

damage and altered cellular biosynthetic function. Many theories have been developed to 

explain features of intrinsic aging. For example, the “oxidative stress theory” refers to 

impairment in the cell’s regulatory genetic program to reverse oxidative damage incurred 

in cellular DNA [55]. Alternatively, the “mitotic clock” theory also is used when 

discussing chronological aging, whereby telomere shortening of DNA with copious 

replication cycles is an inevitable cause of aging [53]. External factors such as sun 

exposure influence the degree of extrinsic aging. Photo-damage can also increase the 

amount of cellular oxidative damage that is poorly tolerated in aged skin given an 

intrinsic deficiency of anti-oxidant cellular machinery. The functional consequences of 

extrinsic and intrinsic aging are shared and include epidermal barrier dysfunction, 

atrophy, xerosis [3], delayed wound healing [2, 3], as well as an increased susceptibility 

to inflammatory or infectious pathologies and irritant contact dermatitis [2, 52, 53, 56, 

57]. Overall with aging, skin integrity is diminished. 
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Histological changes in both the aged epidermis and dermis are evident. Both skin layers 

become atrophic [2, 3, 54, 55] with reduced cellularity [2, 55] as shown by decreased 

numbers of melanocytes, Langerhans cells and fibroblasts [53]. The thinner epidermis 

characterized in aged skin is due to a decrease in proliferation of basal keratinocytes [14, 

22] and a longer SC transit time [4]. In young people, the SC transit time averages 20 

days, whereas in elderly people it can be greater than 30 days [4]. Branchet et al. (1990) 

[4] used punch biopsies from a cross-sectional sample of healthy individuals age 20-80 to 

demonstrate the integumentary histological changes that occur with aging, including 

decreased epidermal thickness. Some studies have shown that despite decreased 

proliferation, keratinocyte differentiation appears unchanged with aging [58].  The 

regular honeycomb keratinocyte pattern of youthful skin becomes irregular with aging 

[54]. Flattening of the dermoepidermal junction is also a histological hallmark of aged 

skin [2, 53, 58]. In the dermis, aging results in decreased matrix synthesis by fibroblasts 

[14, 57, 58], decreased collagen type 1 expression [55], increased matrix 

metalloproteinase (MMP) expression and increased expression of collagenases [55]. 

Overall, dermal atrophy [3, 55, 58] and disorganization of the collagen/elastin framework 

contributes to skin laxity, fragility and poor wound healing [3, 58]. 

 

The relationship of HA and aging is well established in both normal skin and pathological 

conditions. Studies involving patients with conditions of premature aging, such as 

Werner’s syndrome, have provided further evidence of the relationship of HA and aging 

[23, 59]. Skin biopsies from patients with progeria show abnormal GAG metabolism and 

reduced HA content [59]. In addition, patients with progeria have increased HA 
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metabolism reflected in higher urinary excretion of HA [59]. High circulating levels of 

fetal HA drop shortly after birth and are thought to remain in steady state until 

senescence [23, 60]. With aging, circulating levels of HA rise again [23]  with notable 

changes in the histolocalization of HA [60]. In terms of the epidermis, the quantity of HA 

present in the epidermis decreases with age [23]. Dermal HA quantity remains constant 

throughout the lifespan, but becomes less extractable and fluid with aging [23]. 

Replacement of HA has been shown to improve some of the aesthetic and functional 

deficiencies of aged skin. 

 

Controversy exists whether it is possible to stimulate senescent keratinocytes to undergo 

mitotic division to regenerate the skin barrier [55]. Growing evidence is emerging in 

favor of the mitogenic capability of HA in senescence [25].  Wohlrab et al. (2013) 

support the finding that HA has a stimulatory effect on keratinocyte and fibroblast 

proliferation in vitro [61]. Further animal studies show that topical application of 

HMWHA rejuvenates the skin through CD44-dependent expression of markers of 

keratinocyte proliferation and differentiation [56, 62, 63], as well as markers of SC 

integrity including the NMF marker Flaggrin [56]. HA is involved in dissociating basal 

keratinocytes from underlying substratum which promotes cellular replication [30]. Quan 

et al. (2013) [14] has shown that following injection of a cross-linked HA filler into 

individuals older than 70 years there was a 19% increase in epidermal thickness and 

increased Ki67 (keratinocyte proliferation marker) staining one-month post-injection. 

This study also provided evidence that HA injections also stimulated fibroblasts to 

undergo functional activation thus enhancing the structural support of the underlying 
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dermis [14]. Overall, it appears that replacement of HA which is lost in the aging process 

has beneficial effects on skin health. 

 

HA and Cutaneous Immunobiology 

Skin provides a critical barrier role in protecting from external insults. Overall, cutaneous 

immunobiology is complex and tightly regulated. Innate and acquired immunity signaling 

cascades form the backbone to the host immune defense system [64]. Innate immunity 

provides a rudimentary mechanism whereby professional phagocytes such as neutrophils, 

mast cells, and macrophages recognize danger signals from infectious, physical, or 

chemical insults [65]. Keratinocytes are some of the first cells to secrete pro-

inflammatory cytokines in response to a threatening stimulus. The ensuing temporary 

inflammatory reaction allows the individual to combat the potential damage to tissues. 

However, prolonged or uncontrolled inflammation can be detrimental. Cytokines are 

potent chemical messengers of the immuno-inflammatory cascade. The ultimate tissue 

effect of the immuno-inflammatory cascade depends on a multitude of factors including 

the inciting stimulus and the presence of other cellular mediators or receptors [64]. 

Acquired immunity refers to more sophisticated and targeted cell-mediated immunity 

involving T cell and B cell subsets. The discussion of this thesis will be limited to 

mediators of innate immunity and the local tissue inflammatory response. 
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Macrophages 

Macrophages are the most abundant immune cell population in skin [66]. Macrophages 

may either be recruited from a pool of circulating monocytes or alternatively exist as 

tissue-resident macrophages. Macrophages can be identified by expression of cell-surface 

markers including F4/80 [67], CD11b and CD18, CD68, and Fc receptors [68]. 

Macrophages are professional phagocytes which ingest and process foreign material and 

necrotic debris [68]. Through the production of various cytokines macrophages stimulate 

other immune cells such as dendritic cells, neutrophils, mast cells, T lymphocytes and 

lymphoid cells to assist with neutralizing threats to skin homeostasis [66].   

 

Investigators have proposed that macrophages are heterogeneous and exhibit functional 

plasticity defined as polarity (e.g. M1 and M2) based upon different transcriptomes and 

markers [66, 68]. For example, M1 macrophages are generally pro-inflammatory, play a 

role in anti-tumor immunity, help defend against bacteria, protozoa and viruses and are 

present in early stages of response to injury processes [68, 69]. In contrast, M2 

macrophages predominate in later stages of wound repair, and are involved in tissue 

healing and the resolution of inflammation, through secreting anti-inflammatory 

cytokines such as IL-10 [69]. Both infection and inflammation from sterile tissue damage 

provoke expression/accumulation of proinflammatory signals that attract macrophages. 

Macrophages express receptors that are part of the Damage-associated molecular pattern 

(DAMP) detection that include Toll-like receptors (TLRs, TLR2,4 also bind to HA), 

HA/motility receptors such as CD44 and RHAMM, and pattern recognition receptors [66, 

68, 70]. In later stages of tissue repair the ratio of M1 macrophage pro-inflammatory 
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phenotype transitions to favoring the M2 macrophage anti-inflammatory and growth 

promoting phenotype.  One result is, targeting of macrophage phagocytosis to apoptotic 

neutrophils, which contributes to resolution of inflammation [66].  

 

TNFα 

TNFα is a potent pro-inflammatory cytokine that is released by activated M1 

macrophages [71] and Langerhan’s cells [72]. TNFα is a cytokine involved in both the 

inflammatory phase of wound healing as well as acute and chronic skin inflammation. In 

addition, elderly patients have a two-fold to four-fold elevation in baseline levels of 

inflammatory markers [72] which could represent a state of low-grade inflammation 

secondary to systemic disease common in the elderly [73]. TNFα activates multiple 

downstream pro-inflammatory signaling pathways contributing to blood vessel dilatation, 

enhanced neutrophil lifespan and function, and induction of keratinocyte apoptosis [64, 

71]. Researchers have searched for ways to temporize the detrimental tissue effects of 

prolonged inflammation, such as that seen in patients with cutaneous burns, by blocking 

TNFα activation. A rat model of partial-thickness burns, has shown promising results 

using topical HMWHA conjugated to an anti-TNFα antibody to reduce inflammation 

compared to an anti-TNFα antibody alone [71]. Cutaneous ulcers also demonstrate 

increased TNFα levels and provide an additional model of chronic wounding and 

prolonged inflammation. Acute wounding in patients with previous ulcers, have shown to 

have elevated TNFα up to day 7 post-wounding compared with age-matched controls 

[74]. The kinetics of TNFα expression can create challenges in using it as a marker of 



www.manaraa.com

 
 

 

19 

inflammation in research. Initially thought to have a brief and transient acute response 

during inflammation, researchers have shown following wounding TNFα can remain 

elevated for up to a week or longer [75]. Clinically, patient groups with burns and ulcers 

demonstrate that elevated TNFα is both a marker of and target for clinical intervention in 

cases of impaired cutaneous healing and prolonged inflammation.  

 

HA and Inflammation 

HA fragments: 

As previously mentioned, the functional effects of HA depend on its molecular size, 

localization, and availability of specific receptors [25]. HA fragmentation is known to be 

an important early regulator of inflammation that is part of the DAMP response to tissue 

stress. Elevated HA levels and likely fragmentation occur in rheumatoid joints, lung 

disease, as well as inflammatory bowel, liver, and vascular disease [50]. Fragmented or 

LMWHA produced from reactive oxygen species (ROS), catabolic degradation, or de 

novo synthesis through HAS3 contributes to the pro-inflammatory milieu in early stages 

of tissue injury [50]. Noble et al. (2010) and others (Savani et al. (2005)) have studied the 

pathogenic role of HA in sustaining inflammation and fibrosis in a model of non-

infectious fibrotic lung injury [70, 76]. The profile of HA fragment accumulation mirrors 

the peak inflammatory response following damage to the ECM in a lung injury model. 

These fragments activate macrophages and signal expression of a subset of downstream 

pro-inflammatory cytokines through the transcriptional regulator NF-κβ:  these function 

to recruit other mediators of the innate immuno-inflammatory cascade.   When HA 

receptor-mediated endocytosis of these pro-inflammatory HA fragments are blocked 
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unremitting inflammation and consequent fibrosis ensues that eventually results in tissue 

destruction. 

 

Thus, HA fragments regulate the innate immuno-inflammatory response through different 

receptors. For example, signaling through CD44 in murine macrophages augments 

TNFα, IL-1β, and IGF-1 production [50, 77]. TNFα activates fibroblasts further 

promoting collagen deposition, which if uncontrolled can lead to fibrosis [77]. In 

contrast, HA fragment interactions with TLR-2 and -4 are proinflammatory, whereas 

HMWHA interactions with TLR-2/4 are anti-inflammatory [78, 79]. CD44 -/- 

macrophage models have a blunted inflammatory response, whereas double TLR-2 and -

4 knockout models obliterated the inflammatory response from HA fragments but overall 

have increased susceptibility to non-infectious tissue injury [70, 80]. TLR-2 and -4 

knockout models lose the anti-inflammatory protective effect of HMWHA cell-surface 

association [70]. HA fragments function to augment the immune-inflammatory cascade. 

  

Native HA: 

HMWHA is largely anti-inflammatory and evidence of its beneficial contribution to 

wound healing is evident in patients with burns, venous stasis or diabetic ulcers [81]. A 

rat model of inflammation also supports the anti-inflammatory effects of HMWHA. 

Topical HMWHA (4 x 106 kDa) applied directly to the laminectomy site prior to wound 

closure decreased the number of inflammatory cytokines and cells present during the 

acute phase of wound healing [82]. HMWHA dampens the magnitude of an 

inflammatory response by blocking the interaction of LMWHA with pro-inflammatory 
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receptors, inhibiting migration of white blood cells, and diluting the effect of 

inflammatory cell mediators [30, 82]. Although HMWHA is anti-inflammatory in 

experimental models, previous studies attempting to use topical HMWHA in the 

prevention of radiation dermatitis have shown contradictory results in terms of effects on 

inflammation [83-85]. Therefore further research is needed to clarify the relationship 

between exogenous HMWHA and supporting its potential anti-inflammatory effects. 

 

Proinflammatory Skin Disorders 

Dysregulation of the immuno-inflammatory cascade, either from intrinsic or extrinsic 

influences, can contribute to pro-inflammatory skin disorders [66]. For example, 

unintentional increased levels of fragmented or LMWHA can support a proinflammatory 

tissue state. In addition, any topically applied molecule has a theoretical risk of causing 

either an allergic (ACD) or irritant contact dermatitis (ICD). Both ACD and ICD can 

result from contact with non-protein chemical molecules, and the severity of the 

cutaneous reaction depends on the characteristics of the contact itself and the robustness 

of individual inflammatory responses [65]. Contact dermatitis are common family of 

inflammatory skin diseases where damage to cutaneous integrity results in activation of 

the innate immune system [65]. A non-specific pro-inflammatory reaction ensues with 

hyper-production of cytokines such as IL-1α, IL-6, IL-8 and TNFα leading to apoptosis 

of epidermal cells. Resolution usually occurs following elimination of the inciting 

stimulus. In the development of new skin care products, it is important to consider the 

likelihood of the product stimulating a local or systemic inflammatory reaction. 
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Commercial topical hyaluronan applications 

Biotechnology companies have capitalized using a plethora of HA applications to create a 

niche market valued at over a billion dollars annually [86]. The skin industry represents 

one of the primary stakeholders. Current commercial applications of HA aim to replace 

endogenous HA with aging, augment tissue volume by exploiting the known hydrophilic 

and anti-oxidant properties of HA, or as a component in wound dressings to promote 

healing. Injectable HA fillers used in cosmetic dermatology usually require cross-linking 

to improve stabilization and longevity. Overall, exogenous HA containing products have 

tried to emulate the physiological microenvironment of youthful skin to optimize tissue 

repair and rejuvenation. 

 

HA can be produced from either animal or non-animal sources. The most common 

animal derived HA is from rooster coombs [87]. Whereas, non-animal derived HA is 

usually produced through a process of bacterial fermentation [52, 87]. HA has no species 

specificity and is non-allergenic [87]. It is also semi-permanent and naturally degraded in 

our skin. Thus, HA has a strong safety profile with few reported adverse outcomes. 

 

It is well known that an intact SC is the primary barrier to topical administration of high 

molecular weight hydrophilic molecules. Current HA technology has circumvented this 

issue by using injectable formulations or topical penetration enhancers. Injectable cross-

linked HA dermal fillers offer a painful and transient correction of volume, without 

addressing the remaining physiologic deficits of aged skin. Pavicic et al. (2011) looked at 

the effect of topical administration of HA creams of different molecular weights on 
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periorbital wrinkles in women aged 30-60 [52]. Their group only showed an effect with 

LMWHA (50-130 kDa), which they attributed to poor penetration of the HMWHA 

groups [52] yet HMWHA is potentially a safer, more effective skin replacement since 

homeostatic skin HA is largely in a native HMW form. Topical application of HMWHA 

requires the use of penetration enhancers. Established penetration enhancers to aid the 

delivery of HMWHA include chemical methods (e.g. DMSO), iontophoresis, 

microneedles, and lipid nanoparticles/microemulsions [88]. However, the use of 

penetration enhancers often leads to an unpredictable retention and activity of 

exogenously applied HA [89]. A major problem with liposomes, nanoparticles and other 

particulate enhancing formulations is that they are phagocytosed by cells and then HA is 

rapidly destroyed in lysosomes. To date topical HA delivery modalities have failed to 

reliably replenish native HMWHA in aged skin.  

 

Identifying the problem 

Native epidermal HMWHA is linked with a youthful skin phenotype. Replenishing 

depleted HMWHA in the aged epidermis is optimal therapeutically but challenging as 

HMWHA is highly hydrophilic and does not easily penetrate the lipophilic stratum 

corneum (SC). Current penetration enhancers limit the retention or are rapidly destroyed 

by skin cells of HA in the skin. In addition, the stability of exogenous HA depends on 

interactions with HA receptors such as CD44, which show diminished expression with 

aging [57, 62]. A more ideal formulation for topical HMWHA delivery would have 

reliable penetration and retention in the skin and occur in a form that is not rapidly taken 

up and destroyed by skin cells. 
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 HA-PE: a novel skin care technology 

Hyaluronic acid phosphatidylethanolamine (HA-PE) is a patented technology 

(WO2011/140630A1) developed in Dr. Turley’s lab. HA-PE is a modified hyaluronic 

acid with approximately 6% of the disaccharide units of the native hyaluronan covalently 

linked to phosphatidylethanolamine (PE). Phospholipids are the major components of the 

plasma membrane and are therefore biocompatible molecules and are non-allergic [89]. 

In addition, phospholipids have the advantage of being amphiphilic [89]. Soy lecithin is a 

heterogenous mixture of phospholipids, but most are neutral and do not react with HA. 

PE is the most common phospholipid in lecithin. PE has both an amino and a carboxyl 

group that can interact with the carboxyl group on the HA molecule. In the HA-PE 

reaction the amide-linking agent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC), is also the limiting reagent and thus the ratio of EDC to HA ensure the 

consistency of the formulation. After mixing HA-PE in a 1:1 (v/v) ratio with a 

commercially available base cream, it is ready for topical application without the addition 

of further penetration enhancing agents. Unlike the cross-linked HA of injectable fillers, 

topical HA-PE transverses the skin barrier and forms pericellular coats mimicking 

endogenous HA configurations.  In addition, HA-PE is retained in skin independent of 

HA receptors including CD44/RHAMM. HA-PE cream is a novel technology for topical 

penetration of HMWHA. 
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Figure 3. Schematic diagram of HA-PE molecular structure. Molecular structure of 

HA is shown with attached phospholipid tail (shown in red).  
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Chapter 2: Thesis Objectives and Aims 
 

An in vivo study design using a murine model coupled with molecular analysis 

techniques was used to assess the effects of a novel cream formulation, HA-PE. Once 

daily, 0.18g of cream from one of three treatment arms (HA-PE, HA, or Vehicle Cream 

alone) was applied to a shaved area on the back of retired breeder female mice. At three 

time points (24 hours, 5 days, and 10 days) following the first cream application, five 

mice from each treatment arm were sacrificed to harvest a full-thickness biopsy of the 

treated skin and a blood sample. Using an aged murine model, this thesis examined the 

effect of topical HA-PE cream on the epidermis using three primary objectives, which are 

outlined below. 

 

Topical HA-PE and the skin barrier 

The addition of phosphatidylethanolamine groups to a high molecular weight (~ 500 

kDa) hyaluronan will permit it to traverse the stratum corneum and be retained in the 

keratinocytes of the epidermis as a pericellular coat following a single topical application.  

 

Objective 1: To determine if HA-PE crosses the skin barrier following topical 

application.  

Aim 1:  Following a single topical application of Alexa647 tagged HA-PE and HA, 

harvest skin biopsies at 40 min, 2h, 4h, 8h, 24h, 48h, and 72h post application to 

quantify the amount of fluorescence in the epidermis. 
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Topical HA-PE and the epidermis 
 

High-molecular weight hyaluronan in the epidermis exists primarily in the extracellular 

matrix forming pericellular coats around keratinocytes. This configuration forms a fluid 

scaffold that plays an important role in cell proliferation, differentiation, and signaling.   

 

Objective 2: To characterize the effect of multiple applications of topical HA-PE on 

the rejuvenation capacity of the epidermis.  

Aim 1: Using hematoxylin and eosin stained skin specimens, quantify epidermal 

thickness.  

Aim 2: Using paraffin processed skin specimens, quantify the amount of staining 

for immunohistochemistry markers of keratinocyte proliferation (Ki67) and 

keratinocyte differentiation (K10) using image analysis software (ImageJ). 

 

Topical HA-PE and Inflammation 

 

High molecular weight hyaluronan can be degraded into proinflammatory low molecular 

hyaluronan fragments. This thesis aims to examine the possibility of a proinflammatory 

effect of topical HA-PE.  Since localized inflammation manifests systemically, this was 

examined at the site of topical application and in blood. 

 

Objective 3: To determine if multiple topical HA-PE cream applications elicit either 

a local and/or systemic response. 
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Aim 1: Using paraffin processed skin specimens, quantify the amount of staining 

of immunohistochemistry markers of activated Langerhans cells and macrophages 

(F4/80) as a marker of local inflammation. 

Aim 2: Identify the presence of an additional downstream marker of local 

inflammation, TNFα, in tissue samples using an ELISA. 

Aim 3: Examine systemic inflammation by comparing serum C-reactive protein 

samples using an ELISA kit. 
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Chapter 3: Methods 

All experiments were approved by ethics and compliant with the standard operating 

protocols of the Animal Use Subcommittee at the University of Western Ontario, Canada. 

Topical cream formulation 

HA-PE cream formulation: 

For preparation of the HA-PE cream (CA Patent PCT/CIPO 2,703,532), 1.35 mL of 

unrefined liquid soy lecithin (Soy Lecithin GT non-GM IP, Imperial-Oel-Import, 

Germany) was mixed thoroughly at room temperature with 1.35 mL of 1% v/w Sodium 

Hyaluronate Solution (500 kDa, Medical Grade, Lifecore Biomedical, Chaska, MN, 

USA) and 252 µL of isopropanolol. Subsequently, 3.78 mg of dry 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) was added and mixed thoroughly as a linking 

agent. After mixing for 10 – 15 minutes, 3 mL of vehicle cream was added and mixed for 

another 5 minutes. A water-based cream (Mango Face cream, Aquatech, Toronto) used 

throughout the study as the vehicle for mixing with unmodified HA or HA-PE. Creams 

were stored protected from light at 4º C. 

 

HA cream formulation: 

For preparation of the HA cream, 1.35 mL of 1% v/w Sodium Hyaluronate Solution was 

mixed thoroughly with 3 mL of vehicle cream. Creams were stored protected from light 

at 4 º C. 
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Alexa647 mouse experiments 

Preparation of Alexa647-HA: 

In the preparation of Alexa647-HA, the solution was protected from ambient light. In a 

laminar flow hood, 0.0028g of EDC (Sigma Aldrich) was dissolved in a 1 mL solution of 

20 mM MES and 30% ethyl alcohol (pH 4.5) in a 15 mL tube. Subsequently, 200 uL of 

pharmaceutical grade 1% v/w Sodium Hyaluronate Solution (500 kDa) (Lifecore 

Biomedical, Chaska, MN, USA) was added. After five minutes, 300 uL of Alexa Fluor ® 

647 Hydrazide, Tris (triethylammonium) salt (Life Technologies) was added.  The 

Alexa647-HA solution was placed on a rocker at room temperature for 12 hours.   

 

The Alexa647-HA solution was then injected into a Slide-A-Lyzer ® dialysis cassette 

(10,000 MWCO, Thermoscientific) and placed in a 2 L dialysate of 1x PBS with a 

stirring bar in a 4°C room. The entire volume of 1X PBS buffer was exchanged at 1, 3, 

and 5 days. The Alexa647-HA solution was retrieved from the Slide-A-Lyzer ® and stored 

in a 15 mL tube in the 4 °C fridge. 

 

Animals: 

Twelve retired breeder female C57BL/6 mice (The Jackson Laboratory) were used for the 

Alexa647 mouse experiments. Older mouse skin is general defined as > 52 weeks of age 

[56]. Animals were individually caged in a temperature-controlled breeding room with a 

12h light/dark cycle, and fed a standard diet. The breeding room had low ambient light 

exposure to prevent degradation of the fluorescent Alexa647 probe while awaiting harvest 

of the tissue specimens.  
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Treatment of Alexa647-HA/HA-PE mice: 

Twelve retired breeder female C57BL/6 mice were used for the Alexa647 mouse 

experiments. For the initial cream application, each mouse was anesthetized using 

Isofluorane gas. While anesthetized, the upper dorsum of the back was shaven with an 

electric razor, leaving a strip of hair in midline to define the right and left sides. The left 

side was treated with Alexa647-HA cream and the right side was treated with Alexa647-

HA-PE cream. A total of 0.18 g of treatment cream was applied to the respective 

treatment areas. Mice were individually caged and kept in the animal facility’s breeding 

room to avoid high levels of ambient light exposure.  Two mice were euthanized using a 

CO2 chamber at each of six time points: 40 minutes, 2 hours, 4 hours, 8 hours, 24 hours, 

and 72 hours following cream application. 

 

Preparation of Alexa647 mouse tissue: 

A full-thickness biopsy of the entire Alexa647-HA/HA-PE treated area was obtained and 

lightly fixed for 10 minutes in a solution of 1.5% w/v paraformaldehyde (Sigma Aldirch) 

and 0.5% w/v cetylpyridinium chloride monohydrate (Sigma Aldrich) in 1 x PBS. Each 

specimen was fixed in 4% paraformaldehyde (pH 7.4) and stored at – 4 ° C, follow which 

samples were paraffin embedded and sectioned at 10 µm thickness using a Microm HM 

200 Ergostar Microtome (GMI; Ramsey, Minnesota, USA). A glass coverslip was 

mounted on each slide using Prolong® Gold anti-fade reagent with DAPI 

(LifeTechnologies).   
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Analysis of Alexa647-HA-PE mice: 

Ten images of each sample were taken per a mouse at 20X magnification using a Nikon 

Eclipse motorized upright microscope (Nikon Canada Inc). Images were analyzed using 

ImageJ 1.47). The pixel density per an area of epidermis using the Alexa647 channel was 

averaged per a mouse.  

 

Multiple daily topical cream application experiments 

Animals: 

Forty-five retired ten-month old female C57BL/6 mice (The Jackson Laboratory) were 

used for the multiple cream application studies. Animals were individually caged in a 

temperature-controlled environment with a 12 h light/dark cycle, and fed a standard diet.  

 

Wounded mouse positive control for inflammation studies: 

The inflammatory phase of wound repair in addition to acute and chronic models of 

cutaneous inflammation share similar profiles of immune cells and chemical messengers. 

For example, upregulated expression of TNFα, a pro-inflammatory cytokine, is observed 

during the inflammatory phase of wound healing [74] in addition to acute and chronic 

inflammatory skin disorders [72]. Activated macrophages known for their role in wound 

healing, are also recognized as an important mediator in chronic inflammatory skin 

disorders such as psoriasis [90].  Thus macrophages and pro-inflammatory cytokines, 

such as TNFα, appear to be ubiquitous players in cutaneous inflammation regardless of 

the inciting stimulus. A wounded mouse model was chosen as a positive control for the 

local inflammation studies in this experiment. 
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An additional wounded mouse was created as a positive control for the inflammatory 

marker evaluations. This was a single ten-month old C57BL/6 mouse (The Jackson 

Laboratory). After being anesthetized with Isofluorane gas, a 4 mm full-thickness skin 

wound was created on the upper back of the mouse. The wounded mouse was caged 

independently and stored in a temperature-controlled environment with a 12 h light/dark 

cycle, and fed a standard diet. The wounded mouse was euthanized via a CO2 chamber 72 

h post-wounding. The entire wounded area with a 2 mm perimeter of normal tissue was 

excised. This area was divided into two parts: one half was kept for permanent sectioning 

and the other half was stored at – 80 °C.   

 

Treatment of multiple cream application mice: 

At baseline, mice were divided into three sets of fifteen mice to define the three treatment 

arms: HA-PE cream, HA cream, and vehicle cream. For the initial cream application, 

each mouse was anesthetized using Isofluorane gas. While anesthetized, the upper 

dorsum of the back was shaven with an electric razor and 0.18 g of treatment cream was 

applied to the entire shaved area. Subsequent once daily cream applications were 

performed without anesthesia. Groups of five mice in each treatment arm (HA-PE, HA, 

and Vehicle cream) were sacrificed after one, five, and ten cream applications.  

 

Animals were euthanized using a carbon dioxide chamber 24 h following the last cream 

application. A blood sample from each mouse was obtained via a cardiac puncture 

immediately following cessation of respiration. Subsequently, two four-millimeter punch 
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biopsies were obtained. The remainder of the shaven treatment area was excised and 

stored at – 80 °C.  

 

Tissue preparation: 

Tissue biopsies were fixed in a 4 % paraformaldehyde solution at 4 °C for 24 h. Samples 

were then embedded in paraffin blocks and 4 µm sections were cut using a Microm HM 

200 Ergostar Microtome (GMI; Ramsey, Minnesota, USA).  

 

Effect of HA-PE on the epidermis 

Epidermal Thickness Analysis: 

To evaluate epidermal thickness, sections stained with hematoxylin and eosin were 

uploaded to ImageJ 1.47 and analyzed at 4X magnification. For each mouse, fifty serial 

measurements at 75 µm intervals per section were made to determine epidermal thickness 

(stratum basale to the stratum granulosum).  

 

Ki67 and K10 Immunohistochemistry: 

Paraffin-embedded sections obtained from each mouse were processed for 

immunohistochemical staining. Sections were deparaffinized in xylene and rehydrated in 

a graded ethanol series. The sections were heated to a boil using a microwave oven in 

0.01 M aqueous sodium citrate buffer (pH 6.0) for antigen retrieval. Following antigen 

retrieval, the sections were washed in 1X PBS three times for 5 min each and treated with 

3.0 % hydrogen peroxide for 10 min. Further washes with 1 x PBS were performed 
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before sections were blocked with 3.0 % bovine serum albumin for 1 hour at 4 °C. Then, 

sections were incubated with diluted primary antibodies for 18-24h at 4 °C. The 

following primary antibodies were used: rabbit Ki67 monoclonal (1:100 dilution; Abcam 

ab16667) and rabbit K10 monoclonal (1:7000 dilution, Abcam ab76318). Following 

washes, sections were incubated for 2 h at room temperature with biotinylated polyclonal 

secondary antibodies (1:500 dilution, DAKO). Sections underwent further washes and 

were reacted with streptavidin-horseradish peroxidase (1 in 2000 dilution, Abcam) for 30 

min. Staining was visualized with diaminobenzidine (DAB) (2-component DAB kit; 

DAKO). Sections were counterstained with hematoxylin and washed with distilled water. 

A final ascending ethanol series and xylene wash were performed before cover slip 

application using Richard-Allan Scientific Cytoseal 60 (ThermoScientific). 

 

Keratinocyte Proliferation (Ki67) and Keratinocyte Differentiation (K10) Analysis: 

Using Aperio© ImageScope (Aperio ePathology Solutions; http://www.aperio.com/) a 

ruler measuring 500 µm increments was placed parallel to and above the epidermis of 

each specimen. A total of two to three images per specimen were obtained at alternating 

500 µm sections using 18.0X magnification. Specimens with significant ripping or 

damage were excluded from analysis. The Aperio image was saved and transferred to 

ImageJ 1.47. In the ImageJ 1.47 software, the epidermis area was traced along the 500 

µm marked distance.  The traced area was saved and isolated as a new image.  

 

For the keratinocyte (Ki67) proliferation analysis, a total count of the basal keratinocyte 

nuclei in the selected area was recorded. Subsequently, the new image was deconvoluted 
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under the ‘H DAB’ setting. The deconvolution process allowed the software to separate 

the different colour channels of the image to allow for isolation of the positive brown 

staining from the Ki67 antibody.  The deconvoluted image was set to a threshold pixel 

range of 10-31 arbitrary units, to set a conservative assessment for identifying positively 

stained cells. The number of positively stained nuclei was then recorded. The ratio of 

positively stained nuclei to the total nuclei count was used to determine the percentage of 

Ki67 staining per an area of epidermis.  

 

For the keratinocyte (K10) differentiation analysis, an area measurement recorded in 

pixels of the new image of 500 um of traced epidermis was obtained. The image was 

deconvoluted under the ‘H DAB’ setting. The deconvoluted image was set to a threshold 

pixel range of 10-60 arbitrary units, to set a conservative estimate for identifying 

positively stained cells. Using the Histogram analysis tool, a pixel count of the amount of 

positive K10 staining was recorded. The ratio of the number of pixels of K10 staining to 

the total area pixels was used to determine the percentage of K10 staining per area of 

epidermis.  

 

For both Ki67 and K10, five images analyses were performed and averaged per an 

individual mouse. Pooled average data was then calculated per treatment arm (HA-PE, 

HA, and Vehicle) and time point (1 day, 5 days, 10 days).  
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Effect of HA-PE on inflammatory markers 

F4/80 Immunohistochemistry: 

The immunohistochemistry protocol was identical as previously described. The primary 

used in this series was a rat F4/80 monoclonal antibody (1:100 dilution, AbD Serotec). 

F4/80 antibody is used to detect a surface marker present on mature mouse macrophages.  

 

F4/80 Analysis: 

Aperio© ImageScope (Aperio ePathology Solutions; http://www.aperio.com/) was used 

to obtain images of F4/80 slides at 20X magnification. Specimens with significant 

ripping or damage were excluded from analysis. The Aperio images were saved and 

transferred to ImageJ 1.47. Using ImageJ, the area of the entire dermis and subcutaneous 

tissue was traced for each specimen. Subsequently, the number of F4/80 positively 

stained cells within this area were recorded. The wounded mouse specimen was used as a 

positive control for this experiment.  

 

The number of F4/80 positive cells per area was expressed as a percentage of the number 

of F4/80 positively stained cells in the wounded mouse positive control. Seven to ten 

specimens were analyzed per a mouse.  

 

TNF-α ELISA Methods: 

Protein Isolation 

Individual dissected tissue samples from each of the day 10 multiple application trial 

mice were mixed gently with 300 uL of RIPA lysis buffer and a protease inhibitor tablet 
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(Roche) for 10 minutes. An additional tissue sample from the wounded C57BL/6 mouse 

was prepared as a positive control. Subsequently, each sample was lysed further using a 

sonicator for three 20-second pulses. Samples were put on a shaker in the 4 º C cold room 

for an additional 45 minutes. Subsequently, samples were centrifuged at 4 º C for 30 

minutes at 13 000g. The resultant supernatant from each sample was transferred to a new 

eppendorf tube, and the pellet was discarded.   

 

TNF-α ELISA protocol  

A TNF-α mouse ELISA kit (Abcam (ab100747)) was used as per the manufacturers 

instructions to evaluate the presence of TNF-α in the experimental samples and wounded 

mouse positive control sample. Triplicates of 100 uL of each sample supernatant were 

used.  The absorbance of each set of triplicates was read at 450 nm using a Wallace 

Victor2 1420 Multilabel Counter and Manager software (v 3.00.0.53, © 1997-2005 

Perkin Elmer). 

 

The average zero standard sample absorbance was subtracted from the average 

absorbance of each triplicate repeat. The final value for each mouse was then evaluated 

as a percentage of the average absorbance of the wounded mouse positive control.  

 

C-Reactive Protein ELISA Methods:  

Sample Preparation 

Serum obtained via cardiac puncture at the time of euthanasia was collected in a sodium 

heparin coated vacutainer tube (BD, Franklin Lakes, NJ, USA). Within one hour of 



www.manaraa.com

 
 

 

39 

collection, the serum samples were centrifuged at 3000 rpm at 4 °C for 10 minutes using 

an Eppendorf Centrifuge 5810R 15amp version. The supernatant was transferred to 

individual labeled containers and stored at – 80 °C until analysis. 

 

C-Reactive Protein (CRP) ELISA Protocol 

A C-reactive protein mouse ELISA kit (Abcam (ab157712)) was used as per the 

manufacturers instructions to quantify the presence of serum CRP in the experimental 

samples. Triplicates of 100 uL of each sample supernatant and standards were used.  The 

absorbance of each set of triplicates was read at 450 nm using a Wallace Victor2 1420 

Multilabel Counter and Manager software (v 3.00.0.53, © 1997-2005 Perkin Elmer). 

 

The final serum CRP concentration (ng/mL) for each mouse was calculated using the 

slope of the curve (absorbance versus concentration) generated for the standard samples 

provided by the manufacturer.  

 

Statistical Analysis 
Parametric evaluations, including Student’s T Test and OneWay ANOVA, were used to 

determine statistical significance between groups using a p value of 0.05. Tukey’s post-

hoc analysis was used to identify which groups exhibited a statistically significant 

difference. Data are expressed as mean ± standard error of the mean (SEM) of at least 

five independent samples as described above. Statistical analysis was performed using 

GraphPad Prism 6 (GraphPad software). 
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ABSTRACT 

Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA) 

cell coats, which are losses that contribute to atrophic skin characterized by reduced 

barrier and repair functions. We formulated HA-phospholipid 

(phosphatidylethanolamine, HA- PE) polymers that form pericellular coats around 

cultured dermal fibroblasts independently of CD44 or RHAMM display. We 

investigated the ability of these HA-PE polymers to penetrate into aged mouse skin 

and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated 

into the epidermis and dermis, where it associated with both keratinocytes and 

fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer 

of the epidermis and quantification of fluorescence confirmed that significantly more 

Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-

HA. Multiple topical applications of HA-PE to shaved mouse skin significantly 

stimulated basal keratinocyte proliferation and epidermal thickness compared to HA 

or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation 

and did not promote local or systemic inflammation. These effects of HA-PE polymers 

are similar to those reported for endogenous epidermal HA in youthful skin and show 

that topical application of HA-PE polymers can restore some of the impaired functions 

of aged epidermis. 

 

KEYWORDS:  hyaluronan, hyaluronan-phosphatidylethanolamine, pericellular coats, 

keratinocyte, proliferation 
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INTRODUCTION 

Hyaluronan (HA) is an ubiquitous extracellular matrix tissue polysaccharide belonging 

to the glycosaminoglycan family, which are characterized by repeating hexosamines 

and uronic acid [1-3]. Skin HA accounts for approximately 50% of total body HA and 

occurs in both the epidermal and dermal layers. Here it performs a variety of functions 

that are related to its rheological, viscoelastic and biological properties[4-6]. For 

example, its rheological properties contribute to the overall quality, hydration, 

permeability and immune barrier functions of skin while its unique viscoelastic 

properties protect skin cells from mechanical damage [7-11]. The biological properties 

of HA include a contribution to cell survival, proliferation and migration, and result 

from its ability to activate key signaling cascades through interactions with cellular 

HA receptors, which in keratinocytes is primarily CD44 [12-18]. HA is also an 

important regulator of skin immune surveillance [19] and response to injury 

processes [15, 20-25]. Although the primary structure of HA is simple and 

composed only of linear repeating N-acetyl-D- glucosamine and glucuronic acid 

disaccharides, its functions are complexly regulated and dependent upon its 

organization by extracellular and cellular proteins as well as by polymer size [14, 

16, 21, 23]. 

 

The organization of HA in the extracellular matrix and around cells is a critical 

component of its skin functions [6, 26, 27]. On keratinocytes, HA is structured as 

compact pericellular coats that are maintained by CD44. Dermal HA is more 
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abundantly extracellular and linked to a variety of proteoglycans including versican 

[28-34]. The cellular and extracellular organization of skin HA is critical for its 

retention in the papillary dermal and keratinocyte layers. Quantitative loss of HA 

from these layers is associated with skin pathologies including poor wound healing, 

reduced skin elasticity/mobility, and loss of keratinocyte tight-junctions and 

permeability barrier functions [27, 29, 35-45]. Polymer size also contributes to the skin 

functions of HA. For example high molecular weight (HMW), native HA in skin 

protects against tumor initiation [46], provides intrinsic water binding properties of 

skin [26] and is required for dendritic cell functions [15, 19, 47]. It regulates the 

proliferation and differentiation of the basal keratinocyte layer during homeostasis and 

response to injury [4, 6, 48, 49], and contributes to the barrier/hydration function [26, 

34, 50] and structure of the stratum corneum [51]. 

 

Most HA in homeostatic skin is high molecular weight but fragmentation occurs 

following injury or prolonged exposure to UV. In cooperation with the fragmentation 

of other extracellular matrix components, HA fragments activate signaling cascades in 

keratinocytes and dermal fibroblasts that control migration, survival and re-

differentiation required for repair of injured skin [52-59]. HA fragments are also key 

regulators of innate immunity and are required for in-trafficking and pro-inflammatory 

cytokine expression of macrophages [15, 19]. The different functional effects of native 

versus fragmented HA likely result from selective interactions with specific receptors 

and differential effects of polymer size on the clustering/signal activation through these 

receptors [13, 15, 60]. The effects of native HA on homeostatic keratinocyte functions 
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are mediated through CD44 [30, 38] while repair functions of HA fragments involve 

coordination of signaling through CD44: RHAMM and TLR2, 4 complexes [56, 61, 62]. 

 

Chronological skin aging results in physiological alterations of keratinocytes and 

epidermal functions that contribute to epidermal thinning or atrophy, barrier 

dysfunction, delayed wound repair, as well as increased susceptibility to pathologies 

including ulceration, dermatitis and eczema [4, 61, 63]. Although age-associated 

epidermal dysfunction is not well understood, it is associated with changes in HA 

concentration and organization, and CD44 display [38, 64]. Experimental models 

have established that reduction or loss of keratinocyte CD44 results in epidermal 

changes that are similar to aging dysfunction such as thinning of the epidermal layer, 

barrier dysfunction, modified HA metabolism, reduced HA production, altered 

keratinocyte differentiation and decreased skin elasticity. Application of HA to 

aged mouse skin partially restores permeability barrier homeostasis and epidermal 

thickness [42, 43]. Topical or injected HMW HA products have had variable effects 

in restoring a sustained physiological and hydrated microenvironment of youthful 

skin required for optimizing tissue repair and rejuvenation [38, 63, 65, 66]. Trans-

epidermal or dermal HA delivery modalities, although promising, have similarly 

failed to reliably replenish sustained high levels of native HMW HA in the epidermis 

or dermis of aged skin [67-69]. This failure is likely because of poor penetration of 

topically applied HA formulations of MW greater than 50 KDa [40, 70-72], reduced 

HA capture in the epidermis as a result of declining CD44 levels [38, 43, 73] and 
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aberrant organization as well as rapid clearance of the exogenous HA formulations [41, 

61]. 

 

To address this problem, we developed a cell-based screening method for 

identifying HA-phospholipid (phosphatidylethanolamine, HA-PE) formulations that 

form pericellular HA coats on fibroblasts and keratinocytes in a CD44-independent 

manner [74]. We show that topical administration of HA-PE to the shaved skin of 

aged wild type or CD44-/- mice increased HA within the epidermal layer. This HA 

modification promoted basal keratinocyte and hair follicle proliferation as well as 

increased epidermal thickness but does not detectably alter the differentiation of 

keratinocytes. In addition, topical application of HA-PE in vivo did not result in either 

a local or systemic inflammatory response. 

 

METHODS 

Animals: 

Forty-five retired breeder ten-month old female C57BL/6 mice (Jackson 

Laboratory) were used for the multiple cream application studies. An additional twelve 

retired breeder twelve-month old female C57BL/6 mice were used for the Alexa647 

mouse experiments. 

 

Animals were individually caged in a temperature-controlled environment with a 

12h light/dark cycle, and fed a standard mouse chow diet. All experiments were 
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approved by and compliant with the standard operating protocols of the Animal Use 

Subcommittee at the University of Western Ontario, Canada (2009-051). 

 

Preparation of HA-PE and HA: 

For preparation of the HA-PE cream (Patent identification: WO2011140630 A1)[75], 

1.35 mL of unrefined liquid soy lecithin (Soy Lecithin GT non-GM IP, Imperial-Oel- 

Import, Germany) was mixed thoroughly at room temperature with 1.35 mL of 1% v/w 

Sodium Hyaluronate Solution (500 kDa, Medical Grade, Lifecore Biomedical, Chaska, 

MN, USA) and 252 µL of isopropanolol. Subsequently, 3.78 mg of dry 1-ethyl-3-(3- 

dimethylaminopropyl) carbodiimide (EDC) was added and mixed thoroughly as a linking 

agent. After mixing for 10 – 15 minutes, 3 mL of vehicle cream was added and mixed for 

another 5 minutes. For preparation of unmodified HA cream, 1.35 mL of 1% v/w Sodium 

Hyaluronate Solution was mixed thoroughly with 3 mL of vehicle cream. 

 

A water-based cream (Mango Face cream, Aquatech, Toronto) was used throughout 

the study as the vehicle for mixing with unmodified HA or HA-PE. Formulated creams 

were stored protected from light at 4º C. 

 

HA pericellular coat detection: 

HA pericellular coats were detected using particle exclusion [76]. Dermal wild type, 

CD44-/-, RHAMM-/- and CD44:RHAMM-/- embryonic fibroblasts were plated onto 

35 mm tissue culture dishes in DMEM + 10% FBS for 24 hrs. Cells were then fixed in 

2.5% glutaraldehyde in 0.1 M cacodylate buffer, 5 mM CaCl2, pH 7.2, for 30 min then 
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washed gently in Cacodylate buffer. 1 ml of either FITC-labeled 0.4 mm 

microspheres (Invitrogen) or formalized sheep erythrocytes (1X108 erythrocytes/ml) 

were added to each 35 mm culture dish and swirled gently so that cells were evenly 

covered. Dishes were incubated for 15-30 min at 37 oC to let beads or erythrocytes 

settle around cells.  As a control, cells were incubated with 200 µg/ml bovine 

testicular hyaluronidase (Sigma) for 1 h at 37 oC prior to performing the particle 

exclusion assay. Cells were then photographed with a Nikon inverted microscope 

equipped with epifluorescence and Hoffmann optics. 

 

Preparation of Alexa647-HA: 

In the preparation of Alexa647-HA, the solution was protected from ambient light. In a 

laminar flow hood, 0.0028 g of EDC (Sigma Aldrich, http://www.sigmaaldrich.com) was 

dissolved in a 1 mL solution of 20 mM MES and 30% ethyl alcohol (pH 4.5) in a 15 mL 

tube. Subsequently, 200 uL of pharmaceutical grade 1% v/w Sodium Hyaluronate 

Solution (500 kDa) (Lifecore Biomedical, Chaska, MN, USA) was added. After five 

minutes, 300 uL of Alexa Fluor ® 647 Hydrazide, Tris (triethylammonium) salt (Life 

Technologies, http://www.lifetechnologies.com) was added.  The Alexa647-HA solution 

was placed on a rocker at room temperature for 12 hours then dialyzed (10,000 dalton cut 

off, Thermoscientific) at 4 °C. The entire volume of 1X PBS buffer was exchanged at 1, 

3, and 5 days. The retained Alexa647-HA solution was retrieved from the dialysis 

apparatus and stored in a 15 mL tube in the 4 °C fridge. 

 



www.manaraa.com

 
 

 

48 

Application of Alexa647-HA/HA-PE to mice: 

Mice were anesthetized using Isofluorane gas for application of cream. While 

anesthetized, the upper dorsum of the back was shaved with an electric razor, leaving 

a strip of hair in midline to define the right and left sides. 0.18 g of Alexa647-HA 

and Alexa647-HA-PE cream was applied to the left and right sides respectively. Two 

mice were euthanized using a CO2 chamber at each of six time points: 40 min, 2 h, 4 h, 

8 h, 24 h, and 72 h following cream application. 

 

Preparation and analysis of Alexa647-HA-PE: 

A full-thickness biopsy of the Alexa647-HA/HA-PE treated area was obtained and 

lightly fixed for 10  minutes  in  1.5  %  paraformaldehyde  containing  0.5  %  

cetylpyridinium chloride monohydrate [76] in PBS. Each specimen was subsequently 

fixed in 4 % paraformaldehyde (pH 7.4) for an additional 30 min then stored at – 4 

° C. Tissue samples were paraffin processed, mounted then analyzed with a Nikon 

Eclipse motorized upright microscope. The penetration of Alexa647-HA/HA-PE into 

the epidermis was quantified using ImageJ, which converted fluorescent images to 

pixel density per a tissue area. A total of twelve C57BL/6 retired breeder female mice 

were used for this experiment. 

 

Treatment of mice with HA-PE: 

Three treatment arms were used for these experiments: HA-PE cream, HA cream, 

and vehicle cream and 15 mice were used/group. For the initial cream application mice 
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were anesthetized, shaved and treated as described above. Subsequent once daily cream 

applications were performed without anesthesia. Five mice in each treatment arm 

were sacrificed after one, five, and ten applications. At each of these times, mice were 

euthanized, a blood sample via a cardiac puncture and two four-millimeter punch 

skin biopsies were obtained. The remainder of the shaven treatment area was 

excised and stored at – 80 °C. To provide a positive control for inflammation markers, 

an additional mouse was wounded with a 4 mm punch biopsy as described previously 

[77], then tissue harvested using an 8 mm punch biopsy 3 days after wounding. All 

tissue biopsies were fixed in 4 % paraformaldehyde/PBS at 4 °C for 24 h. Samples 

were then processed for paraffin histology sections. For immunohistochemistry, tissue 

sections were deparaffinized and antigen retrieval performed by heating tissue sections 

in a microwave oven in 0.01 M aqueous sodium citrate buffer (pH 6.0). Tissue sections 

were washed then incubated with one of the following primary antibodies: rabbit Ki67 

monoclonal (1:100 Abcam), rabbit K10 monoclonal (1:7000 dilution, Abcam), and 

rat F4/80 monoclonal (1:100 dilution, AbD Serotec) followed by the appropriate 

biotinylated secondary antibody. Sections were counterstained with hematoxylin then 

mounted in Richard-Allan Scientific Cytoseal 60 (ThermoScientific). Digital images of 

stained tissue sections were obtained using an Aperio Scanscope. Five representative 

areas were taken per mouse and analyzed using ImageJ. 

 

Measurement of Epidermal Thickness: 

To evaluate epidermal thickness, the above tissue sections stained with hematoxylin 

and eosin (4X magnification images) were analyzed using Image J. For each mouse, 
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fifty serial measurements at 75 um intervals per section were made to determine 

epidermal thickness (stratum basale to the stratum granulosum) [78]. 

 

TNF-α ELISA: 

Activated macrophages and proinflammatory cytokines, such as TNFα, appear to 

be ubiquitous players in cutaneous inflammation regardless of the inciting stimulus 

whether wounding or sterile inflammation [79-81]. Dissected tissue samples from 

each of treatment and group and wounded tissue were mixed gently RIPA lysis 

buffer and a protease inhibitor tablet for 10 min then sonicated for three 20-second 

pulses. Samples were incubated on a rotary shaker at 4 º C in lysis buffer for an 

additional 45 min then centrifuged at 13,000 g (4 ºC) for 30 min. The pellet was 

discarded and supernatant used for the TNFα-ELISA assays (Abcam), which were 

performed per the manufacturers instructions. Triplicate samples of 100 uL of each 

were used for these assays. 

 

C-Reactive Protein ELISA: 

Serum was obtained from blood harvested via cardiac puncture. The serum samples 

were centrifuged at 3000 rpm at 4 °C for 10 mins using an Eppendorf Centrifuge and 

stored at – 80 °C until analysis. Samples were analyzed for the presence of C-

Reactive protein using an ELISA kit (Abcam) and assays were performed using the 

manufacturers instructions. Triplicates samples (100 uL) of each sample were used for 

these assays. 
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Statistical Analysis: 

OneWay ANOVA and Tukey test, as a post-hoc analysis, were used to determine 

statistical significance between groups using a p value of 0.05. Data are expressed 

as mean ± standard error of the mean (SEM) of at least five independent samples 

as described above. Statistical analysis was performed using GraphPad Prism 6 

(GraphPad software). 

 

RESULTS 

A. Formulating and characterizing HA-PE polymers that forms pericellular coats 

Using a cell-based screen, HA-PE polymer formulations were prepared. The polymer 

formulations that  formed  nanoparticles  were  discarded  while  those  that  were  non- 

particulate and formed pericellular coats on fibroblasts were identified using particle 

exclusion assays (Figure 1A). Addition of HA-PE polymer resulted in a significant 

increase in the number of cells that formed pericellular coats compared to those formed 

when PBS alone was added. A light but significant increase in the number of cells 

forming coats was also stimulated by exogenous unmodified HA of the same size used 

for HA-PE formulations. Nevertheless, the addition of HA-PE stimulated coat formation 

to a significantly greater extent than HA alone and a trend to formation of larger coats 

was also observed (data not shown). 
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CD44 has been demonstrated to be critical for keratinocyte, fibroblast and smooth 

muscle cell HA coat formation [32-34, 41, 43] and both CD44 and RHAMM [12, 14, 

62] have recently been implicated in the binding of HA to tumor cells and fibroblasts. 

The role of these HA receptors in the formation of endogenous HA and HA-PE coats 

was examined by comparing wild type primary mouse embryonic fibroblasts (MEF) 

with those lacking RHAMM, CD44 or both receptors due to genetic deletion of these 

genes (Figure 2A). Loss of RHAMM resulted in highly variable numbers of MEF 

forming endogenous pericellular coats but these were not significantly different from 

wild type fibroblasts. Loss of CD44 however resulted in a 6-fold reduction in the 

number of MEF exhibiting  HA coats. Dual loss of CD44 and RHAMM did not 

further reduce coat loss from that observed in CD44-/- MEF. These results show that 

CD44 is the major HA receptor that facilitates endogenous HA coat formation in 

MEF consistent with previous studies of other cell types including keratinocytes [33, 

40, 43].  The effect of HA-PE on RHAMM-/-, CD44-/-, RHAMM: CD44-/- and wild 

type MEF coat formation was compared next to begin to identify the mechanisms for 

HA-PE-promoted pericellular HA coats. As shown in Figure 2B, the addition of HA-PE 

to these different fibroblast genotypes resulted in a similar number of cells with HA 

coats indicating that HA-PE effects were not dependent upon HA receptor display 

including CD44, which has previously been shown to mediate endogenous coat 

formation (Figure 2 B, C). However, HA-PE stimulated coat formation in CD44-/- 

MEF was sensitive to hyaluronidase as were endogenous coats (Figure 2C). These 

results predict that addition of a PE group to HA promote its direct association with 

cells in a CD44-independent manner. 
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To determine if HA-PE promotes coat formation in other cell types particularly in 

vivo, its effect on skin keratinocyte HA pericellular coats, which have previously been 

shown to require CD44 expression [30, 43] was next evaluated. Adult mouse back 

skin was chosen for these studies since it has been reported to produce very little 

endogenous HA [29], permitting more sensitive detection of exogenous applications 

of HA-PE using staining methods to detect accumulated HA. Consistent with previous 

studies [29], very little HA staining was observed in control (PBS) keratinocytes. 

Topical application of HA-PE to wild type mice significantly increased HA staining in 

the epidermis (Figure 3) but did not detectably increase HA staining in the dermis when 

compared to PBS-treated controls likely because the dermis produces large amounts of 

HA and the staining method was not sensitive enough to detect elevation above this 

high background. These results show that HA-PE not only enhances pericellular HA 

coat formation in cultured MEF but also in epidermal keratinocytes in vivo. These 

results also show that HA-PE crosses the outer cornified epidermal layer more 

efficiently than unmodified HA. 

 

The association of HA with keratinocytes in mouse skin in vivo depends upon 

CD44 expression [30]. We therefore next assessed if the loss of CD44 altered HA-PE 

mediated increases in keratinocyte associated HA in vivo. As shown in Figure 3B, 

topical application of HA-PE increased hyaluronan staining of CD44-/- epidermis 

compared to PBS controls suggesting that epidermal accumulation of HA-PE is CD44 

independent in vivo similar to cultured MEF. To more directly follow the association of 

small amounts of HA-PE with the epidermal and dermal skin layers, we labeled HA-PE 
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with Alexa-dye and analyzed its distribution after a single topical application to mouse 

skin. 

 

B. Alexa647-HA-PE accumulates in the epidermis and penetrates into the dermal 

and sub-dermal skin layers. 

Alexa647-HA-was prepared, linked to PE (A647-HA-PE) or not (A647-HA) and applied 

as equal amounts of HA to the shaved back skin of mice as described in methods.  

Skin biopsy samples were collected from 40 min to 72 h after the single application, 

processed for histology and examined with a confocal microscope. Confocal images 

showed accumulation of A647-HA-PE and particularly A647-HA on the stratum corneum 

but A647- HA-PE also penetrated into the stratum granulosum as well as the basal 

keratinocyte layers (Figure 4). Fluorescence was also observed in dermal fibroblasts 

and even within the subcutaneous muscle layer. Further analysis of the epidermis 

revealed that A647-HA- PE was most strongly associated with subpopulations of basal 

keratinocytes, and formed coats around these cells (Figure 4, arrows). A647-HA-PE also 

was detected in fibroblasts of the upper dermis. In contrast, A647-HA primarily 

accumulated in the outer stratum corneum with much smaller amounts penetrating 

into the epidermis and dermis. In particular, A647-HA accumulation was not 

concentrated in the basal layer (Figure 4). 

 

Since the boundary of the epidermal layer is clearly identified, the amount of A647-

HA- PE in this layer was quantified using image analysis as described in methods. For 

these analyses, the fluorescent intensity of Alexa647 HA, Alexa647HA-PE and a negative 
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control vehicle cream were compared from the stratum basale to stratum granulosum 

layers of the epidermis. A647-HA-PE penetrated into the epidermis as early as 40 

min after application and could be detected up to 72 h after application (Figure 4). 

Accumulation of A647-HA-PE in skin was significantly greater than A647-HA at all 

time points but reached a maximum difference of 5 fold at 2 h. This significantly 

elevated accumulation of A647-HA-PE versus A647-HA was sustained for 24 h 

suggesting that HA-PE was able to establish a stable organization within the 

epidermis. Although A-647-HA-PE levels were still greater than A-647-HA at 72 h 

after application, the difference did not reach statistical significance (Figure 4). 

 

Confocal analysis (24 h shown, Figure 4) showed that A647-HA primarily accumulated 

in the outer stratum corneum with little penetration into the dermis. A647-HA-PE was 

also present in the stratum corneum but unlike unmodified A647-HA, accumulated 

around dermal fibroblasts. These results show that HA-PE readily penetrates into and is 

retained in the epidermal and deeper skin layers 

 

The formation of pericellular HA coats have been linked to cellular detachment 

during mitotic rounding of proliferating fibroblasts and smooth muscle cells[12, 16, 

82]. HA coats have also been linked to migration and differentiation of keratinocytes 

in organotypic cultures[13, 14, 30, 38, 83, 84]. We therefore next assessed if 

increasing keratinocyte HA coat formation by application of HA-PE affects the 

proliferation or differentiation of this skin cell type. 
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C. HA-PE increases epidermis thickness and basal keratinocyte proliferation but 

does not affect keratinocyte differentiation or dermal cell proliferation. 

The consequence of repeated HA-PE topical application on epidermal thickness was 

first quantified. As shown in Figure 5, daily topical application of HA-PE 

significantly enhanced epidermal thickness by 24 h, 5 days and 10 days after treatment 

initiation when compared to application of unmodified HA or vehicle control. 

Maximal epidermal thickness occurred between 24 h and 5 days and was sustained 

throughout the treatment period (Figure 5).  The tissue samples were dehydrated 

prior to analysis of epidermal thickness,  therefore did not account for 

any in vivo  contribution of increased tissue hydration from hyaluronan. 

 

Consistent with this thickening effect on the epidermal layer, topical application of 

HA-PE stimulated basal keratinocyte proliferation compared to unmodified HA or 

vehicle controls as detected by Ki67 staining, which is a cell proliferation marker. In 

addition, increased Ki67 staining of the suprabasal keratinocytes was observed in the 

HA-PE group. The majority of epidermal proliferation and regeneration occurs by 

activation of stem cells in the basal layer of the epidermis. The suprabasal levels contain 

transit-amplifying (TA) intermediate stem cells which are defined by a finite number of 

cell divisions before entering a terminal differentiation pathway (85). The HA-PE cream 

appears to stimulate both the basal layer stem cells in addition to the TA stem 

cells.  Increased keratinocyte proliferation was observed 1 day after treatment initiation 

and was sustained throughout the treatment period, corresponding well with the time 
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frame observed for the increase in epidermal thickness (Figure 6). Analysis of DAPI-

stained skin sections 24 and 72 h after application of HA-PE or HA showed that dermal 

cell number was similar in both treatments suggesting that HA-PE does not stimulate 

fibroblast or other dermal cell proliferation.  This predicts that HA-PE effects on 

proliferation are limited to the epidermal layer.   

 

Growth factors such as keratinocyte growth factor (KGF) that promote 

keratinocyte proliferation coincidentally inhibit keratinocyte differentiation and 

hyaluronan production [86, 87]. We therefore next assessed if elevating HA around 

keratinocytes affects their differentiation cycle. The consequence of HA-PE 

application on the expression of keratin-10 (K-10) was quantified using 

immunohistochemistry. No detectable effect of HA-PE application on K-10 staining 

was observed suggesting that HA-PE does not modify keratinocyte differentiation 

(Figure 7). 

 

D. Topical application of HA-PE does not affect local skin or systemic inflammation. 

Since HA and its fragments are potent regulators of the immune system in particular 

innate immunity [15, 19, 47, 88], which could indirectly affect keratinocyte 

proliferation, we next determined if topical application of HA-PE affected local or 

systemic inflammation. F4/80 staining of skin tissue sections and TNFα was used to 

identify localized activation of macrophages while serum CRP levels were monitored 

to determine effects on systemic inflammation. As shown in Figure 9, the application 

of HA-PE did not increase F4/80 staining levels compared to unmodified HA or 
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vehicle controls. Furthermore, the levels of macrophage activation detected by this 

method were very low compared to those detected in skin wounds, which are known to 

contain high levels of activated macrophages [89] and were used as a positive control. 

Similarly local TNFα and systemic CRP inflammation levels were not increased by 

topical application of HA-PE compared to unmodified HA or vehicle controls (Figure 8 

A, B). 

 

DISCUSSION 

Our results identify a method for preparing HA-phospholipid (PE) polymers that do 

not require CD44 display for forming pericellular coats around fibroblasts in culture and 

aged keratinocytes in wild type and CD44-/- mice. These results are consistent with a 

mechanism whereby HA-PE inserts directly into the cell membrane via the 

phospholipid entity. The topical applications of this HA-PE polymer increased 

epidermal thickness of aged female mouse skin as a result of stimulating the 

proliferation of the basal keratinocyte layer in the absence of detectable dermal or 

systemic inflammation or changes in keratinocyte differentiation rates. 

 

Topical application of unmodified HA to intact skin in situ penetrated into the epidermis 

and dermis as previously reported [43, 70-72] but this was limited compared to HA-

PE polymers. In addition, most of the unmodified HA remained associated with the 

stratum corneum and was not retained in skin as long as HA-PE. The ability of 

unmodified HA to penetrate the skin in small amounts, which can occur in both rodent 

and human skin, is dependent upon molecular weight. Thus, HA polymers smaller 
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than 50,000 Da readily penetrate human skin ex vivo while larger HA chains do not 

[70]. The average MW of HA used in the present study was 500,000 Da and therefore 

the limited association of unmodified HA with the epidermis is likely due to the 

polymer size restriction.  The penetration of this HA  size  through  the  outer  stratum  

corneum is facilitated by the additional of a phospholipid moiety and this addition 

likely increases solubility of HA in lipids (e.g. ceramides, cholesterol and fatty acids) 

[90] that are present in the stratum corneum. Retention within the epidermis and dermis 

is likely promoted by the ability of keratinocytes and fibroblasts to capture and retain 

HA-PE as demonstrated in culture. Since HA-PE is able to organize as a pericellular coat 

in the absence of CD44 display, HA-PE polymers are able to spontaneously organize 

within the epidermis and we predict that keratinocyte CD44 acts at least in part as an 

anchor for attaching HA to outside of cells. 

 

Dermal and epidermal homeostasis is compromised in aging and a variety of 

disease processes. Aged skin is characterized as dry, atrophic, inelastic, and wrinkled. 

The key molecule required for water retention within skin is HA. Both the amounts 

and organization of HA change in skin with intrinsic (chronological) and extrinsic 

(photodamage) aging [4, 91, 92]. With chronological aging while HA is retained 

within the aged dermis, it is precipitously lost from the epidermis. HA retained within 

the aged dermis is however modified in its organization and this change together with 

epidermal loss are thought to contribute to some of the above malfunctions of 

aged skin [38]. Additionally, expression of skin HA receptors including CD44 are 

increasingly reduced with age. Even though intrinsic and extrinsic skin aging are 
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distinctive processes, they share similarities in molecular mechanisms. For example, 

extrinsic causes of premature aging such as chronic exposure to UV also results in 

loss of skin moisture, HA and HA receptor expression. Importantly, photoaging is also 

associated with a decrease in the size of HA that will likely affect its ability to 

organize into structures such as pericellular coats [73]. HA performs a variety of 

functions in skin and this age dependent loss is considered to impact upon skin 

moisture, barrier functions, epidermal thinning and sluggish response to injury [34]. 

The ability of HA-PE polymers to increase rodent epidermal thickness and 

epidermal proliferation predict that this formulation has the potential for reversing 

some of the intrinsic and extrinsic age-related epidermal defects such as epidermal 

thinning and reduced repair response [93-95]. 

 

Our results showing that HA-PE promotes epidermal thickening and keratinocyte 

proliferation are similar to the ability of exogenous high molecular weight HA to 

affect functions of aged keratinocytes in culture and in vivo [33, 35, 40, 43] 

although in the present study topical HA-PE had a significantly greater effect than 

unmodified HA. Our data suggest that this results from increased basal keratinocyte 

proliferation rather than enhanced differentiation. Previous reports have similarly 

noted an increase in keratinocyte proliferation in response to topical HA but noted this 

effect was maximal for intermediate (50,000-400,000 Daltons) and no effect was noted 

for large HA (>400,000 Daltons) [40]. In another study, topical application of large HA 

promoted epidermal barrier function and keratinocyte differentiation [43]. The 

different effects of high versus intermediate HA fragments in these studies may have 



www.manaraa.com

 
 

 

61 

been due to the documented poor penetration of high molecular weight HA [70] that 

is confirmed here. The ability of 500,000 Da HA-PE to promote keratinocyte 

proliferation is likely because it efficiently penetrated to and was retained in the basal 

keratinocyte layer to a much greater extent than unmodified HA. 

 

A number of topical HA formulations have been developed in the past decade most 

of which are composed of intermediate-small HA fragments (e.g. < 50,000 Da) or nano- 

particulate formulations [4, 96]. Although these have shown efficacy (e.g. [97]) in 

terms of treating skin disorders, we pose that HA-PE formulations will be more 

effective since they are designed to replace the naturally occurring HA pericellular coat 

that is depleted during aging and other conditions that cause epidermal atrophy [35, 

40], and will also therefore be retained within the epidermis for longer times. 

Particulate formulations by their nature tend to stimulate endocytosis and such 

formulations are rapidly depleted from tissues [98-100]. Topical application of 

intermediate unmodified HA has the advantage of being non-particulate and able to 

penetrate skin readily but is dependent upon the expression of keratinocyte CD44 for 

effects on keratinocyte function, which is depleted with age-related or other causes of 

epidermal atrophy. 

 

The consequences of exogenous HA or inhibition of endogenous HA show that 

CD44 mediates the consequences of HA on keratinocyte function [6, 38, 61, 85]. For 

example, the effects of topical HA on keratinocyte differentiation and proliferation 

are ablated when CD44 function is blocked or expression is lost [35, 40, 43]. 
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CD44 appears to regulate multiple downstream signaling pathways to control these 

keratinocyte processes and these include coordination of signaling through EGFR, 

activation of RHO GTPase and translocation of activated ERK1,2 to the cell 

nucleus [17, 35, 38, 85, 101]. The mechanisms by which HA-PE control basal 

keratinocyte proliferation and the dependence of this effect on CD44 expression are 

currently being investigated. 
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Manuscript: Figure 1. HA-PE simulates pericellular coat formation in cultured 

fibroblasts. 500 kDa HA was linked to PE using EDC to achieve a stoichiometry of 

1:10 (HA:PE) (A). This ratio was selected because it resulted in the largest 

pericellular HA coats, which were detected using fluorescent particle exclusion assays 

(B). The black patches on the epi-fluorescent images are areas of pericellular coats. 

A Hofmann image is included which shows cells at the center of the pericellular 

coats. Images were taken with a 10X objective. The percentage cells/10x field that 

were surrounded by HA coats were calculated using Hofmann optics (C). Values are 

Mean and S.E.M n = 3  fields. Asterisks indicate statistical significance (p < 0.01). 
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Manuscript: Figure 2. Endogenous HA coats require expression of CD44 while HA-

PE generated coats do not. The numbers of wild type and RHAMM-/- fibroblasts 

that form endogenous HA coats are not significantly different. In contrast, loss of 

CD44 significantly reduces the numbers of fibroblasts forming coats. This is not  further 

reduced by loss of both CD44 and RHAMM (A). However, loss of CD44 has no 

effect on the number of cells forming coats as a result of HA-PE addition (B). The 

pericellular coats formed by CD44-/- fibroblasts in the presence of HA-PE are 

destroyed by hyaluronidase (C). Images were taken with a 20X Hoffmann objective. 

Values are the Mean and S.E.M. n = 75 cells. 
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Manuscript: Figure 3. Topical application of HA-PE stimulates HA accumulation 

in wild type and CD44-/- keratinocytes in mouse skin in vivo. Topical application 

of HA-PE to shaved B57/BL6 wild type mice increases HA in the keratinocyte layer 

as detected by biotinylated HABP (blue staining indicates hyaluronan 

detected by HABP probe) (A). Staining 3 days after application is not detectably 

different in the dermis and although patchy and variable in the epidermis is 

significantly different in HA-PE versus vehicle controls (brown staining indicates 

hyaluronan detected by HABP probe) (p < 0.05). Images were taken with a 20X 

bright field objective. Similar results were obtained when the epidermal layer was 

analyzed for hyaluronan after HA-PE was applied to B57/BL6 RHAMM:CD44-/- 

mice. Significantly greater HA staining was observed in HA-PE treated vs. vehicle 

controls (p < 0.0001) (B) Images were taken with a 10X brightfield objective. Values in 

A and B are the Mean and S.E.M. n = 3 mice, 5 tissue section/mouse. 
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Manuscript: Figure 4. Topical Alexa647-HA-PE enters the epidermis. Significantly 

increased fluorescent staining is observed in the epidermis (stratum basale to stratum 

granulosum) of the Alexa647-HA-PE group at all time points up to 24 h (mean ± S.E.M, 

20 skin images) (* p < 0.05). Representative confocal images of Alexa647-HA-PE 

and Alexa647-HA treated mice sectioned at 24 h. Dashed line indicates the junction 

of the epidermis and dermis. Arrowheads indicate areas of enhanced pericellular 

fluorescence. Alexa647-HA-PE and Alexa647-HA staining was pseudo-colored green.  

Blue staining is DAPI.    
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Manuscript: Figure 5. HA-PE cream results in a thicker epidermis. There is a 

significant increase in epidermal thickness (µm) of mice treated daily with HA-PE 

for 1, 5, and 10 days compared with control groups (HA and Vehicle cream) (mean ± 

SEM, 5 mice per group) (*p < 0.05). A single representative H&E section from each 

of a day 10 HA-PE, HA, and Vehicle Cream mouse is shown, arrows indicate 

epidermal thickness. 
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Manuscript: Figure 6. HA-PE cream results in increased keratinocyte 

proliferation. There is a significant increase in the percentage of positive Ki67 staining 

per an area of epidermis of mice treated daily with HA-PE for 1, 5, and 10 days 

compared with HA or Vehicle Cream (mean ± SEM, 5 mice per group) (*p < 0.05). 

A single representative Ki67 section from each of a day 10 HA-PE, HA, and 

Vehicle Cream mouse is shown. 
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Manuscript: Figure 7. HA-PE cream does not affect suprabasal keratinocyte 

differentiation. The percentage of K10 staining per an area of epidermis for mice 

treated daily for 1, 5, and 10 days with either HA-PE, HA, or Vehicle Cream (mean ± 

SEM, 5 mice per group). 
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Manuscript: Figure 8. HA-PE cream does not elicit a local inflammatory response. 

The percentage of positive F4/80 staining per an area of a wounded mouse for mice 

treated daily for 1, 5, and 10 days with either HA-PE, HA, or Vehicle Cream (mean ± 

SEM, 5 mice per group). 
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Manuscript: Figure 9. HA-PE cream does not elicit a local or systemic 

inflammatory response. The TNFα expression as a percentage of a wounded mouse 

control for day 10 treated mice with HA-PE, HA, or Vehicle Cream using an ELISA 

(mean ± SEM, 5 mice per group) (A). The serum CRP concentration (ng/mL) of day 

10 treated mice with HA-PE, HA, and Vehicle Cream using an ELISA (mean ± SEM, 5 

mice per group) (B). 
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Chapter 5: Discussion 
 

Hyaluronan, particularly HMWHA, has proven benefits in wound repair [45, 46, 48], as a 

skin surface depot for transdermal drug delivery [92] , and when injected as a cross 

linked form, cosmetic tissue rejuvenation [87, 93]. With aging, the quantity of 

endogenous HA in the epidermis is decreased and the HA in the dermis becomes more 

cross-linked. Topical penetration of exogenous hydrophilic HMWHA has been a 

challenge to date because of limited penetration of the negatively charged polymer 

through the outer hydrophobic skin layers. This study evaluated the role of a novel 

exogenous HA formulation in addressing the functional and aesthetic consequences of 

aging. In summary, our study found that modified HA-PE cream penetrated the skin 

barrier resulting in increased keratinocyte proliferation and epidermal thickness, without 

resulting in a local/systemic inflammatory response compared with control groups 

(unmodified HA, vehicle cream). 

 

Our study assessed the consequences of a novel hyaluronic acid 

phosphatidylethanolamine (HA-PE) cream (CA Patent PCT/CIPO 2,703,532) designed to 

facilitate topical penetration and retention of HMWHA in the skin on keratinocyte 

renewal and skin inflammation. HA-PE is a modified hyaluronic acid with approximately 

6% of the disaccharide units of native hyaluronan (~500kDa) covalently linked to 

phosphatidylethanolamine. Phospholipids, such as PE, act as amphipathic vehicles in skin 

delivery with a strong safety profile including low immunogenicity [89]. A stable HA-PE 

formulation was accomplished by using the water soluble crosslinking agent, EDC as the 



www.manaraa.com

 
 

 

84 

limiting reagent in the reaction. HA-PE was formulated in a 1:1 (v/v) ratio with a 

standard skin base cream and then topically applied to shaved mouse skin. 

 

Evidence that HA-PE cream traversed the outer skin barrier and incorporated into the 

epidermal layers was assessed using confocal analysis following a single topical 

application Alexa647 fluorescently labeled HA (Alexa647HA and Alexa647HAPE). Our 

results show that HA-PE penetrates into the epidermis and is retained for up to 72h 

following a single application, suggesting that the amphipathic qualities of the PE linkage 

modifications facilitate the permissibility of the 500 kDa HA into the epidermis.  These 

findings are preserved in CD44-/- mice, demonstrating that the retention of HA-PE 

appears independent of CD44 interactions, which is the HA receptor that primarily 

mediates endogenous keratinocyte pericellular coats.  

 

Some authors argue that molecules greater than 500 Daltons are impermeable to the skin 

barrier [94]. In contrast using a murine model, Brown et al. (1999) showed that 

[3H]hyaluronan, weighing approximately 400 kDa, penetrated the skin barrier and small 

quantities of 360-400 kDa polymers were recovered in both the skin/blood after 

application [95]. The permeability of HA-PE (~500 kDa) likely depended on its structural 

composition as opposed to its molecular weight. Modifying the structural composition of 

a molecule has been successfully used by other researchers to increase penetration of 

hydrophilic compounds. For example, Billich et al. (2005) found that the addition of 

phosphocholine to topical Cyclosporin A (1203 Da), an immunosuppressant drug, 

increased its penetration into skin compared to an unmodified version [96]. Overall, HA-
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PE appears to penetrate the skin barrier and be retained in the extracellular space 

independent of CD44 receptor interactions. 

 

The addition of phosphatidylethanolamine to HA-PE results in retention of exogenous 

HA-PE in the epidermis. The retention of HA-PE is likely a result of interactions with 

receptors, inserting into the plasma membrane via the PE tails and native HA in the extra-

cellular environment. The rate of HA-PE rate of decline appears reduced compared to 

unmodified HA, however this was not measured directly and should be the focus of 

future investigations. Native epidermal HA turnover (t1/2) is approximately 24h [41, 97].   

Our findings are consistent with these previous results with declining levels of both 

exogenous HA-PE and HA occurring 24h after a single application. Overall, HA-PE 

cream delivers HMWHA to the epidermis, which behaves in a similar fashion to native 

HA. 

 

Qualitatively in addition to accumulating in the basal keratinocyte layer of the epidermis, 

a strong signal for HA-PE remained in the SC up to the final 72h time point. In addition 

to a role in providing a permeability barrier, the SC is important in preventing xerosis [7]. 

Skin hydration in the SC is dependent on the configuration of lipids and the presence of 

hygroscopic molecules such as NMF [98] . Saki et al. (2000) deposed earlier theories that 

hyaluronan was absent from SC [99]. Their group provided evidence that along with 

NMF, HA was a key player in the moisturization of the outermost layer of the epidermis 

[99]. In addition to providing a reliable carrier of HMWHA to the epidermis, retention of 
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HA-PE in the SC has the potential added benefit of improving skin hydration through 

reinforcing the outermost protective barrier.  

 

Further evidence supporting the penetration of HA-PE into the epidermis rests in its 

effect on epidermal physiology. Multiple applications of HA-PE result in a two-fold 

increase in epidermal thickness compared with unmodified HA. This increase in 

epidermal thickness correlates to increased keratinocyte proliferation without detectable 

differences in suprabasal terminal keratinocyte differentiation per area. The thickened 

epidermis is likely to reflect both indirect (hydrophilic properties of HA, not measured in 

the current study) and direct (stem cell mobilization/cell proliferation) effects of HA-PE 

cream. Thus, the increased keratinocyte proliferation observed in the current study is 

likely secondary to stimulation of EPUs in the basal layer of the epidermis by HA-PE. 

However, the exact mechanism and confirmation of the effect of HA-PE on EPU is a 

potential topic for future study. 

 

Stimulation of epidermal proliferation may be negatively linked to either tumorigenesis 

or hyperproliferative skin disorders such as psoriasis. Skin tumor biology is complex. 

Repetitive ultraviolet radiation damage is widely known to be an important risk factor for 

the development of basal and squamous cell cancers. It is unlikely that HMWHA 

promotes skin tumorigenesis. First, HMWHA acts as a free radical scavenger and is 

protective against DNA damage which is a common etiology linked to skin cancer [100]. 

In a rodent model, HMWHA production in the naked mole rat confers resistant to cancer 

throughout its extended lifespan (30+ years) [51]. When production of HMWHA is 
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blocked, the cancer resistance is lost. However, future research is needed to refute any 

unlikely potential link with HA-PE cream application and tumorigenic potential. In terms 

of promoting a negative hyperproliferative skin phenotype, fortunately, the structure of 

the skin layer histology appears qualitatively to remain intact following HA-PE cream 

application. In comparison, marked hyperplasia of the epidermis and incomplete 

keratinocyte differentiation can be negatively associated characteristics of psoriasis-like 

skin inflammation. In psoriasis these changes are also accompanied by a loss of the 

granular cell layer of the epidermis in addition to the presence of neutrophils in the 

epidermis[90], which are not changes evident in our experimental model.  

 

One potential mechanism by which topical HA-PE recovers an attenuated epidermis is by 

attracting water to the ECM. HA can bind up to 10,000x its weight in water [100]. 

Exogenous HA-PE traverses the skin barrier and contributes to the keratinocyte 

pericellular coat mimicking an endogenous HA configuration. Röck et al. (2010) 

demonstrated that intradermal injection of non-crosslinked HA incorporated into the 

pericellular matrix and promoted proliferation of fibroblasts in vitro [101]. Similarly, our 

non-crosslinked topical HA-PE transverses the skin barrier and incorporates into the 

pericellular matrix. The immediate increase in epidermal thickness evident at 24h post-

application may therefore reflect the increased water content of the epidermis treated with 

HA-PE. 

 

Thinned epidermis characteristic of senescent skin, in both human and murine models, is 

a result of decreased keratinocyte proliferation [2, 3, 56]. Topical HA-PE has a direct 
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effect on restoring the proliferative capacity of aged keratinocytes contributing to a 

thickened epidermis. Pericellular hyaluronan coats are known to create a fluid scaffold, 

which enhances cell migration and proliferation [28, 43]. Exogenous HA-PE may 

facilitate diffusion and interactions of keratinocyte growth and differentiation factors in 

the restored pericellular matrix. Alternatively, a mechanical stimulus from increased 

ECM volume may exist which stimulates keratinocyte proliferation.  The added ECM 

structural support from crosslinked dermal HA fillers have been associated with a modest 

increase in epidermal thickness one to three months post-injection [14]. The added ECM 

volume from HA-PE could incite a similar stimulus for epidermal proliferation. Our 

findings of HMWHA resulting in increased keratinocyte proliferation conflict with the 

results from studies which show only LMWHA and not HMWHA enhance keratinocyte 

proliferation in aged skin [56, 62]. For example, Kaya et al. (2006) used in vivo and in 

vitro models to demonstrate that only topical HA cream < 400 kDa resulted in 

keratinocyte proliferation and skin hyperplasia, whereas HA > 400 kDa had no effect. 

This finding could be due to poor penetration of HA > 400 kDa in their experimental 

models which included both mouse and human skin.  The addition of 

phosphatidylethanolamine in the HA-PE cream overcomes penetration barriers allowing 

HMWHA to enter the skin and impact downstream mediators of skin rejuvenation and 

growth.  

 

Topical HA-PE: HA receptor interactions, may also promote up-regulation of 

endogenous HA production to further amplify its effects and establish a positive 

autocrine feedback loop.   In support of this injected HA has been shown to have a 
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stimulatory effect on endogenous synovial cell HA synthesis [102] . Rilla et al. (2013) 

demonstrated that activate HA synthesis is associated with cells shedding microvesicles 

containing HA synthetic machinery which can propagate HA production at a distance 

from the original cell source [103]. Therefore, HA-PE could promote HA production in 

the dermis and other points distance from the epidermis by this type of mechanism.  

Further studies are required to elucidate potential mechanism whereby exogenous HA-PE 

restores a critical quantity of HA in the epidermis, which is permissive to functional 

activation of endogenous HA synthesis. 

 

Consistent with my results, previous studies have indicated increased keratinocyte 

proliferation and thickened epidermis can result from factors that promote HA synthesis, 

such as EGF, whereas factors that inhibit HA synthesis result in decreased proliferation 

and enhanced differentiation [21]. Our results show despite increased proliferation there 

was no detectable difference per area of suprabasal keratinocyte differentiation compared 

with control groups. Thus, the downstream signaling effects of HA-PE stimulate 

keratinocyte proliferation without negatively affecting the suprabasal differentiation 

expression. This is important because preservation of keratinocyte differentiation is 

crucial to maintain epidermal integrity [104].  

 

If exogenously applied HMWHA is rapidly metabolized into pro-inflammatory LMWHA 

fragments it has the potential for stimulating inflammation. Our study has provided 

evidence that topical HA-PE cream does not elicit either a local or systemic inflammatory 

response. In mimicking the endogenous configuration of HA, HA-PE preserves the anti-
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inflammatory properties of HMWHA. The wounding literature best supports the anti-

inflammatory nature of HMWHA. Topical HMWHA added to a rat laminectomy model 

before final skin closure resulted in a reduction of macrophages and inflammatory 

cytokines at the wound site during the acute phase of healing [82]. Schimizzi et al. (2006) 

theorized that HMWHA blocked the interaction of LMWHA pro-inflammatory signaling 

cascades [82]. In addition, the hydrophilic properties of HMWHA were thought to 

provide a dilutional effect on inflammatory cell mediators [82]. The anti-inflammatory 

properties of HA have been used clinically as a component in wound dressings for burns 

and skin ulcers since the 1960s [71, 102]. Injectable HA has also been used as a therapy 

to temporize joint inflammation in arthritis [102]. In addition, HMWHA has well 

documented anti-oxidant properties as a free radical scavenger which protects cellular 

DNA from damage [105]. Our study has confirmed the absence of an inflammatory 

reaction caused by HA-PE cream when applied to normal aged skin. However, future 

studies are needed to determine if anti-inflammatory and anti-oxidant properties of HA-

PE cream have benefit in clinical models of cutaneous inflammation or wounding.   
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Limitations and Future Directions 
 

One of the limitations of the current study is technical. A wild-type murine model of aged 

skin was chosen because unlike nude murine models, the wild-type mice have the full 

compliment of their immune system. Compared with human skin, the mouse epidermis 

and dermis are thinner and thus penetration of the experimental creams may be 

facilitated. However, due to economic and practical administrative reasons of a pilot 

study, more homologous models to human skin were not selected. In addition, as this is a 

pilot experiment, the variability of the expected findings was not known at the time of 

model selection. Extrapolating the study results broadly to other animal models or 

humans should be done with caution. We recommend that future studies repeat and add 

to our results in a model whose skin more closely resembles that of human tissue. In 

addition, given the proven beneficial effects of HMWHA on certain pathologic 

conditions such as radiation dermatitis, burns, cutaneous wounds, and ulcers, it would be 

interesting to study whether topical HA-PE had a beneficial effect in these settings. 

 

Another limitation is confirming if HA promotes skin renewal by mobilizing stem cell 

and/or TA populations in the basal layer of the epidermis. Future studies could 

incorporate markers of stem cell populations such as integrins[106] or Oct4[19] to further 

evaluate this theory. 

 

Skin integrity and health is a multidimensional construct. For our studies, we selected a 

handful of relevant markers as a starting point to understand the potential effects of HA-

PE cream on the epidermis. However, further research is needed to explore additional 
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markers of skin integrity and dermal markers. Our results suggest that HA-PE penetrates 

through the dermis but we did not test for its effects in this layer.  Future studies for 

example could use markers of collagen production or Flaggrin expression in the SC could 

provide further support of the trophicity of HA-PE on aged skin. In addition, it will be 

necessary for future studies to examine the potential mechanisms of action of HA-PE. 

Examining known pathways of native HA activity could help elucidate whether HA-PE is 

acting through an analogous mechanism.  

 

Our analysis methodology included primarily immunohistochemistry and ELISA tissue 

specimens. Given that these methodologies rely on preserved and dehydrated specimens- 

they can only at best provide a snapshot of the dynamic state of live tissue. Furthermore, 

the immunohistochemistry analysis software relies on calculating pigment density as an 

indicator of the presence of the markers of interest. There is always some variability in 

the uptake and penetration of the stain given a particular staining cycle and the particular 

section of tissue. To mitigate this variability, all specimens from a single time point were 

stained and analyzed as a cohort. 

 

Given that HA is known to improve cutaneous hydration and barrier function- we 

recommend that future studies consider adding a functional measure of cutaneous 

hydration and transepidermal water loss (TEWL) in a live animal model. In the current 

study, the necessary equipment for these measurements was cost prohibitive to obtain for 

the pilot data. 

 



www.manaraa.com

 
 

 

93 

The current investigation provides a foundation for future studies to investigate the 

positive effect of HA-PE on replacing the native cutaneous HA lost with age. 

 

 

Conclusion 
 

Aged skin, characterized by diminished hyaluronan, has both functional and aesthetic 

deficits. Topical HA-PE is a novel skin care technology that reliably carries HMWHA 

(500 kDa) into the epidermis to restore a youthful phenotype to aged skin. The biological 

effect of HA-PE results in a thicker epidermis from enhanced keratinocyte proliferation. 

The suprabasal differentiation markers appear unchanged compared to unmodified HA. 

In addition, HA-PE does not result in either a local or systemic inflammatory response. 

Findings from our investigation provide a foundation for further research to elucidate 

additional clinically relevant benefits of HA-PE cream. 
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Appendix B 
 
 
 
 
 
 
 
 
 
 

 

Supplemental: Figure 1. Epidermal thickness representative H&E sections from each 

of day 1 HA-PE (A), HA (B), and Vehicle Cream (C) groups.  
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Supplemental: Figure 2. Epidermal thickness representative H&E sections from each 

of day 5 HA-PE (A), HA (B), and Vehicle Cream (C) groups.  
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Supplemental: Figure 3. Ki67 representative sections from each of day 1 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. Ki67 – brown staining. 
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Supplemental: Figure 4. Ki67 representative sections from each of day 5 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. Ki67 – brown staining. 
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Supplemental: Figure 5. K10 representative sections from each of day 1 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. K10 – brown staining. 
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Supplemental: Figure 6. K10 representative sections from each of day 5 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. K10 – brown staining. 
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Supplemental: Figure 7. K10 representative sections from each of day 10 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. K10 – brown staining. 
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Supplemental: Figure 8. F4/80 representative sections from each of day 1 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. F4/80 – brown staining. 
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Supplemental: Figure 9. F4/80 representative sections from each of day 5 HA-PE (A), 

HA (B), and Vehicle Cream (C) groups. F4/80 – brown staining. 
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Supplemental: Figure 10. F4/80 representative sections from each of day 10 HA-PE 

(A), HA (B), and Vehicle Cream (C) groups. F4/80 – brown staining. 
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Supplemental: Figure 11. F4/80 representative sections from wounded mouse positive 

control. F4/80 – brown staining. 
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